Abstract
Ballast water releases from ships can have undesirable effects on the marine environment. Invasive amphibian species released from ballast water is a standout amongst the most basic issues presented these days in the marine ecology. This work surveys the accessible treatment approaches utilized for ballast water which can be ship or port-based, with the first being less demanding. On-board treatment approaches, named mechanical, physical and chemical techniques, were given particular importance. The effectiveness of these systems, along with component of ballast water, biological invasion, ballast water treatment standards and treatment technologies were compiled and presented in this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bailey SA, Duggan IC, van Overdijk CD, Johengen TH, Reid DF, MacIsaac HJ (2004) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshw Biol 49(3):286–295. https://doi.org/10.1111/j.1365-2427.2004.01185.x
Balaji R, Yaakob OB (2011) Emerging ballast water treatment technologies: a review (homepage on the internet) c2011. Available from: http://agris.fao.org/agris-search/search.do?recordID=AV2012069353. Accessed 22 Apr 2016
Barry SC, Hayes KR, Hewitt CL, Behrens HL, Dragsund E, Bakke SM (2008) Ballast water risk assessment: principles, processes, and methods. ICES J Mar Sci 65:121–131. https://doi.org/10.1093/icesjms/fsn004
Beer T (1983) Environmental oceanography. An introduction to the behaviour of coastal waters. Pergamon Press, New York. https://doi.org/10.1016/B978-0-08-026291-8.50009-2
Bircher K (2016) UV treatment of ballast water: market, regulations, validation test methods. IUVANews 18(2):6–10
Bolch CJS, Salas MF (2007) A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates Gymnodinium catenatum and the Alexandrium Tamarensis complex to Australasia. Harmful Algae 6:465–485. https://doi.org/10.1016/j.hal.2006.12.008
Brickman D, Smith PC (2007) Variability in invasion risk for ballast water exchange on the Scotian Shelf of Eastern Canada. Mar Poll Bull 54:863–874. https://doi.org/10.1016/j.marpolbul.2007.03.015
Briski E, Linley RD, Adams J, Bailey S (2014) Evaluating efficacy of a ballast water filtration system for reducing spread of aquatic species in freshwater ecosystems. Manag Biol Invasions 5(3):245–253. https://doi.org/10.3391/mbi.2014.5.3.08
Burkholder JM, Hallegraeff GM, Melia G, Cohen A, Bowers HA, Oldach DW, Parrow MW, Sullivan MJ, Zimba PV, Allen EH, Kinder CA (2007) Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae 6(4):486–518. https://doi.org/10.1016/j.hal.2006.11.006
CETS Commission on Engineering and Technical Systems (1996) Stemming the tide controlling introductions of nonindigenous species by ships’ ballast water. Retrieved November 24, 2006, from http://www.nap.edu/books/0309055377/html
David M, Perkovič M (2004) Ballast water sampling as a critical component of biological invasions risk management. Mar Pollut Bull 49(4):313–318. https://doi.org/10.1016/j.marpolbul.2004.02.022
De Lafontaine Y, Despatie SP, Wiley C (2008) Effectiveness and potential toxicological impact of the PERACLEAN® Ocean ballast water treatment technology. Ecotoxicol Environ Saf 71(2):355–369. https://doi.org/10.1016/j.ecoenv.2007.10.033
Doelle M, McConnell ML, VanderZwaag DL (2007) Invasive seaweeds: global and regional law and policy responses. Bot Mar 50(5/6):438–450. https://doi.org/10.1515/BOT.2007.046
Eames I, Landeryou M, Greig A, Snellings J (2008) Continuous flushing of contaminants from ballast water tanks. Mar Pollut Bull 56(2):250–260. https://doi.org/10.1016/j.marpolbul.2007.10.032
El Nemr A, Hassaan MA, Madkour FF (2018a) Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism. Environ Process 5(1):95–113. https://doi.org/10.1007/s40710-018-0284-9
El Nemr A, Hassaan MA, Madkour FF (2018b) HPLC-MS/MS mechanistic study of direct yellow 12 dye degradation using ultraviolet assisted ozone process. J Water Environ Nanotechnol 3(1):1–11. https://doi.org/10.22090/JWENT.2018.01.001
Endresen Ø, Behrens HL, Brynestad S, Andersen AB, Skjong R (2004) Challenges in global ballast water management. Mar Pollut Bull 48(7–8):615–623. https://doi.org/10.1016/j.marpolbul.2004.01.016
Flagella MM, Verlaque M, Soria A, Buia MC (2007) Macroalgal survival in ballast water tanks. Mar Pollut Bull 54(9):1395–1401. https://doi.org/10.1016/j.marpolbul.2007.05.015
Gavand MR, McClintock JB, Amsler CD, Peters RW, Angus RA (2007) Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water. Mar Pollut Bull 54(11):1777–1788. https://doi.org/10.1016/j.marpolbul.2007.07.012
Gollasch S (2004) Highlights of the IMO ballast water management convention. www.gollaschconsulting.de. Last accessed 24/10/2019
Gonçalves AA, Gagnon GA (2012) Recent technologies for ballast water treatment. Ozone Sci Eng 34(3):174–195. https://doi.org/10.1080/01919512.2012.663708
Gray DK, Bailey SA, Duggan IC, MacIsaac HJ (2005) Viability of invertebrate diapausing eggs exposed to saltwater: implications for Great Lakes’ ship ballast management. Biol Invasions 7(3):531–539. https://doi.org/10.1007/s10530-004-6347-z
Gray DK, Duggan IC, MacIsaac HJ (2006) Can sodium hypochlorite reduce the risk of species introductions from diapausing invertebrate eggs in non-ballasted ships? Mar Pollut Bull 52(6):689–695. https://doi.org/10.1016/j.marpolbul.2005.11.001
Gregg MD, Hallegraeff GM (2007) Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae 6(4):567–584. https://doi.org/10.1016/j.hal.2006.08.009
Guide for Ballast Water Treatment (2016) American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862
Hassaan MA (2016) Advanced oxidation processes of some organic pollutants in fresh and seawater. PhD, a thesis, Faculty of Science, Port Said University
Hassaan MA, El Nemr A (2017) Advanced oxidation processes for textile wastewater treatment. Int J Photochem Photobiol 2(3):85–96. https://doi.org/10.11648/j.ijpp.20170203.13
Hassaan MA, El Nemr A, Madkour FF (2016) Application of ozonation and UV assisted ozonation for decolorization of direct yellow 50 in sea water. Pharmaceut Chem J:2349–7092
Hassaan MA, El Nemr A, Madkour FF (2017a) Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. Egypt J Aquat Res 43(1):11–19. https://doi.org/10.1016/j.ejar.2016.09.006
Hassaan MA, El Nemr A, Madkour FF (2017b) Advanced oxidation processes of Mordant Violet 40 dye in freshwater and seawater. Egypt J Aquat Res 43(1):1–9. https://doi.org/10.1016/j.ejar.2016.09.004
Hassaan M, El Katory M, Ali R, El Nemr A (2019) Photocatalytic degradation of reactive black 5 using Photo-Fenton and ZnO nanoparticles under UV irradiation. Egypt J Chem. https://doi.org/10.21608/ejchem.2019.15799.1955
Hassaan MA, El Nemr A, Madkour FF, Idris AM, Said TO, Sahlabji T, Alghamdi MM, El-Zahhar AA (2020a) Advanced oxidation of acid yellow 11 dye; detoxification and degradation mechanism. Toxin Rev:1–9
Hassaan MA, El Nemr A, El-Zahhar AA, Idris AM, Alghamdi MM, Sahlabji T, Said TO (2020b) Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study. Toxin Rev:1–10
Herwig RP, Cordell JR, Perrins JC, Dinnel PA, Gensemer RW, Stubblefield WA, Ruiz GM, Kopp JA, House ML, Cooper WJ (2006) Ozone treatment of ballast water on the oil tanker S/T Tonsina: chemistry, biology and toxicity. Mar Ecol Prog Ser 324:37–55. https://doi.org/10.3354/meps324037
Hoigné J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In: Hubrec J (ed) The handbook of environmental chemistry quality and treatment of drinking water. Springer, Berlin, pp 83–141. https://doi.org/10.1007/978-3-540-68089-5_5
Holm ER, Stamper DM, Brizzolara RA, Barnes L, Deamer N, Burkholder JM (2008) Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water. Mar Pollut Bull 56(6):1201–1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
Hua J, Liu SM (2007) Butyltin in ballast water of merchant ships. Ocean Eng 34(13):1901–1907. https://doi.org/10.1016/j.oceaneng.2006.09.007
İnmeler C (2009) Ballast water management in tankers. PhD thesis, DEÜ Fen Bilimleri Enstitüsü
International Maritime Organisation (IMO) (2004) International convention for the control and management of ships’ ballast water and sediments. Retrieved April 12, 2006 from http://www.imo.org/Conventions/mainframe.asp?topic_id=867
International Maritime Organisation (IMO) (2005a) MEPC 53/24. Report of the Marine Environment Protection Committee on its fifty-third Session
International Maritime Organisation (IMO) (2005b) MEPC 53/2/14. Harmful Aquatic Organisms in Ballast Water. Submission to support the review of the availability of appropriate technologies to meet the requirement of the Convention. Submitted by the United States
Jones KR, Corona JP (2008) An ambient tax approach to invasive species. Ecol Econ 64(3):534–541. https://doi.org/10.1016/j.ecolecon.2007.03.006
Jones AC, Gensemer RW, Stubblefield WA, Van Genderen E, Dethloff GM, Cooper WJ (2006) Toxicity of ozonated seawater to marine organisms. Environ Toxicol Chem 25(10):2683–2691. https://doi.org/10.1897/05-535R.1
Matousek RC, Hill DW, Herwig RP, Cordell JR, Nielsen BC, Ferm NC, Lawrence DJ, Perrins JC (2006) Electrolytic sodium hypochlorite system for treatment of ballast water. J Ship Prod 22(3):160–171
McCollin T, Quilez-Badia G, Josefsen KD, Gill ME, Mesbahi E, Frid CL (2007) Ship board testing of a deoxygenation ballast water treatment. Mar Pollut Bull 54(8):1170–1178. https://doi.org/10.1016/j.marpolbul.2007.04.013
McCollin T, Shanks AM, Dunn J (2008) Changes in zooplankton abundance and diversity after ballast water exchange in regional seas. Mar Pollut Bull 56(5):834–844. https://doi.org/10.1016/j.marpolbul.2008.02.004
McGee S, Piorkowski R, Ruiz G (2006) Analysis of recent vessel arrivals and ballast water discharge in Alaska: toward assessing ship-mediated invasion risk. Mar Pollut Bull 52(12):1634–1645. https://doi.org/10.1016/j.marpolbul.2006.06.005
Murphy KR, Ruiz GM, Dunsmuir WT, Waite TD (2006) Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environ Sci Technol 40(7):2357–2362. https://doi.org/10.1021/es0519381
Murphy KR, Field MP, Waite TD, Ruiz GM (2008) Trace elements in ships’ ballast water as tracers of mid-ocean exchange. Sci Total Environ 393(1):11–26. https://doi.org/10.1016/j.scitotenv.2007.12.011
Niimi AJ (2004) Role of container vessels in the introduction of exotic species. Mar Pollut Bull 49(9–10):778–782. https://doi.org/10.1016/j.marpolbul.2004.06.006
Oemcke D, van Leeuwen J (1998) Chemical and physical characteristics of ballast water: implications for treatment processes and sampling methods. Tech Rep CRC Reef Res Cent 23:44
Oemcke DJ, Van Leeuwen J (2003) Chemical and physical characterization of ballast water. Part 1: Effects on ballast water treatment processes. J Mar Environ Eng 7(1):47–64
Oemcke DJ, Van Leeuwen JH (2005) Ozonation of the marine dinoflagellate alga Amphidinium sp. – implications for ballast water disinfection. Water Res 39(20):5119–5125. https://doi.org/10.1016/j.watres.2005.09.024
Perrins JC, Cooper WJ, Van Leeuwen JH, Herwig RP (2006a) Ozonation of seawater from different locations: formation and decay of total residual oxidant – implications for ballast water treatment. Mar Pollut Bull 52(9):1023–1033. https://doi.org/10.1016/j.marpolbul.2006.01.007
Perrins JC, Cordell JR, Ferm NC, Grocock JL, Herwig RP (2006b) Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water. Mar Pollut Bull 52(12):1756–1767. https://doi.org/10.1016/j.marpolbul.2006.07.011
Quilez-Badia G, McCollin T, Josefsen KD, Vourdachas A, Gill ME, Mesbahi E, Frid CL (2008) On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions. Mar Pollut Bull 56(1):127–135. https://doi.org/10.1016/j.marpolbul.2007.09.036
Reynolds G, Mekras C, Perry R, Graham N (1989) Alternative disinfectant chemicals for trihalomethane control-a review. Environ Technol 10(6):591–600. https://doi.org/10.1080/09593338909384776
Roberts J, Tsamenyi M (2008) International legal options for the control of biofouling on international vessels. Mar Policy 32(4):559–569. https://doi.org/10.1016/j.marpol.2007.10.002
Sano LL, Bartell SM, Landrum PF (2005) Decay model for biocide treatment of unballasted vessels: application for the Laurentian Great Lakes. Mar Pollut Bull 50(10):1050–1060. https://doi.org/10.1016/j.marpolbul.2005.04.008
Sassi J, Viitasalo S, Rytkonen J, Leppakoski E (2005) Experiments with ultraviolet light, ultrasound and ozone technologies for onboard ballast water treatment. VTT TIEDOTTEITA 2313
Smit MG, Ebbens E, Jak RG, Huijbregts MA (2008) Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water. Environ Toxicol Chem 27(3):746–753. https://doi.org/10.1897/07-343.1
Stehouwer PP, Buma A, Peperzak L (2015) A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ Technol 36(16):2094–2104. https://doi.org/10.1080/09593330.2015.1021858
Tamburri MN, Ruiz GM (2005) Evaluations of a ballast water treatment to prevent aquatic invasions and ship corrosion. Paper no. 2005- D09, presented at SNAME maritime technology conference, October 19–21, Houston, TX, 09p. http://www.nei-marine.com/documents/Tamburri_Evaluations.pdf, 16 June 2008
Tang Z, Butkus MA, Xie YF (2006a) The effects of various factors on ballast water treatment using crumb rubber filtration: statistic analysis. Environ Eng Sci 23(3):561–569. https://doi.org/10.1016/j.marenvres.2005.06.003
Tang Z, Butkus MA, Xie YF (2006b) Crumb rubber filtration: a potential technology for ballast water treatment. Mar Environ Res 61(4):410–423. https://doi.org/10.1089/ees.2006.23.561
Tsolaki E, Diamadopoulos E (2010) Technologies for ballast water treatment: a review. J Chem Technol Biotechnol 85(1):19–32. https://doi.org/10.1002/jctb.2276
US stance adds to owners’ difficult choices (homepage on the internet) (n.d.). Available from: http://www.ballastwatermanagement.co.uk/news/view,usstance-adds-to-owners-difficult-choices_42523.htm. Accessed 22 Apr 2016
Veldhuis MJ, Fuhr F, Boon JP, Ten Hallers-Tjabbers CC (2006) Treatment of ballast water; how to test a system with a modular concept? Environ Technol 27(8):909–921. https://doi.org/10.1080/09593332708618701
Vorkapić A, Komar I, Jelić Mrčelić G (2016) Shipboard ballast water treatment systems on seagoing ships. Trans Marit Sci 5(01):19–28. https://doi.org/10.7225/toms.v05.n01.003
Vorkapić A, Radonja R, Zec D (2018) Cost efficiency of ballast water treatment systems based on ultraviolet irradiation and electrochlorination. Promet-Traffic Transport 30(3):343–348. https://doi.org/10.7307/ptt.v30i3.2564
Werschkun B, Banerji S, Basurko OC, David M, Fuhr F, Gollasch S, Grummt T, Haarich M, Jha AN, Kacan S, Kehrer A (2014) Emerging risks from ballast water treatment: the run-up to the international ballast water management convention. Chemosphere 112:256–266. https://doi.org/10.1016/j.chemosphere.2014.03.135
Wikimedia Foundation Inc. (2007) Seawater. Retrieved November 12, 2008 from http://en.wikipedia.org/wiki/Sea_water
Wright DA, Dawson R, Cutler SJ, Cutler HG, Orano-Dawson CE, Graneli E (2007a) Naphthoquinones as broad spectrum biocides for treatment of ship’s ballast water: toxicity to phytoplankton and bacteria. Water Res 41(6):1294–1302. https://doi.org/10.1016/j.watres.2006.11.051
Wright DA, Dawson R, Orano-Dawson CE (2007b) Shipboard trials of menadione as a ballast water treatment. Mar Technol 44(1):68–76
Wu D, You H, Du J, Chen C, Jin D (2011) Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water. J Environ Sci 23(3):513–519. https://doi.org/10.1016/S1001-0742(10)60443-3
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hassaan, M.A., El Nemr, A. (2021). Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies. In: Inamuddin, Ahamed, M.I., Lichtfouse, E., Altalhi, T. (eds) Remediation of Heavy Metals. Environmental Chemistry for a Sustainable World, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-80334-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-80334-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80333-9
Online ISBN: 978-3-030-80334-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)