Abstract
Network QoS refers to the mechanisms employed by routers and switches along the traffic path to manage throughput, loss, latency, reordering, and jitter of the traffic. Today, the Internet and many other TCP/IP networks only support the so-called best effort characteristic for traffic, which is insufficient to support the requirements of many current and, in the opinion of the authors, even more futuristic applications including real-time signalling and control, critical reliability, and application requiring any form of guarantees. While TCP/IP has seen a range of architectural options to support better than best effort service characteristic, these are often either limited in scalability, challenging to operationalize, or inflexible.
This chapter gives an overview of the current best practices of existing QoS mechanisms for TCP/IP networks, discusses gaps, and describes their applicability to different scopes of networks, such as the Internet, Home, Access-Provider, and Mobile Networks. It then suggests a longer-term evolution of the network scopes and discusses how to apply QoS in them. It then introduces a set of future QoS concepts including experience based and high-precision QoS. To enable such future QoS concepts, a future “toolkit” of architectural concepts is required in future networks, including programmability of QoS, virtualization of QoS, flexible network packet header functionality, instrumentation, and monetization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
I. Stoica, H. Zhang, F. Baker, Y. Bernet, Per hop behaviors based on dynamic packet state, draft-stoica-diffserv-dps-02 (work in progress) (2002)
J. Postel, Internet protocol, STD 5, RFC 791, DOI 10.17487/RFC0791 (1981), https://www.rfc-editor.org/info/rfc791
B. Braden, D. Clark, J. Crowcroft, et al., Recommendations on queue management and congestion avoidance in the internet, RFC 2309 (1998), https://www.rfc-editor.org/info/rfc2309
E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching architecture, RFC 3031 (2001), https://www.rfc-editor.org/info/rfc3031
R. Pan, P. Natarajan, F. Baker, G. White, Proportional integral controller enhanced (PIE): a lightweight control scheme to address the bufferbloat problem, RFC 8033 (2017), https://www.rfc-editor.org/info/rfc8033
D. Newman, Benchmarking terminology for firewall performance. RFC 2647 (1999), https://www.rfc-editor.org/info/rfc
S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP friendly rate control (TFRC): protocol specification, RFC 5348 (2008), https://www.rfc-editor.org/info/rfc5348
S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for differentiated services, RFC 2475, DOI 10.17487/RFC2475 (1998), https://www.rfc-editor.org/info/rfc2475
Netflix and YouTube are slowing down in Europe to keep the Internet from breaking, https://edition.cnn.com/2020/03/19/tech/netflix-internet-overload-eu/index.html
S. Shenker, C. Partridge, R. Guerin, Specification of guaranteed quality of service, RFC 2212, DOI 10.17487/RFC2212 (1997), https://www.rfc-editor.org/info/rfc2212
L. Andersson, R. Asati, Multiprotocol label switching (MPLS) label stack entry: “EXP” field renamed to “traffic class” Field, RFC 5462, DOI 10.17487/RFC5462 (2009), https://www.rfc-editor.org/info/rfc5462
F. Baker, G. Fairhurst, IETF recommendations regarding active queue management, BCP 197, RFC 7567 (2015), https://www.rfc-editor.org/info/rfc7567
P. Eardley, Pre-congestion notification (PCN) Architecture, RFC 5559 (2009), https://www.rfc-editor.org/info/rfc5559
S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) specification, STD 86, RFC 8200 (2017), https://www.rfc-editor.org/info/rfc8200
K. Schepper, B. Briscoe, Identifying modified explicit congestion notification (ECN) semantics for ultra-low queuing delay (L4S), draft-ietf-tsvwg-ecn-l4s-id-12 (work in progress) (2020)
O. Albisser, K. De Schepper, B. Briscoe, O. Tilmans, H. Steen, DUALPI2 - low latency, low loss and scalable (L4S) AQM. Proc. Linux Netdev 0x13 (2019) https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
X. Zhu, R. Pan, N. Dukkipati, V. Subramanian, F. Bonomi, Layered internet video engineering (LIVE): network-assisted bandwidth sharing and transient loss protection for scalable video streaming. 2010 proceedings IEEE INFOCOM
H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: a transport protocol for real-time applications, STD 64, RFC 3550 (2003), https://www.rfc-editor.org/info/rfc3550
M. Handley, Congestion control for real-time media: history and problems, 2012 IAB workshop, https://www.iab.org/wp-content/IAB-uploads/2012/07/2-iab-cc-workshop.pdf
L. Han, G. Li, B. Tu, T. Xuefei, F. Li, R. Li, J. Tantsura, K. Smith, IPv6 in-band signaling for the support of transport with QoS, draft-han-6man-in-band-signaling-for-transport-qos-00 (work in progress) (2017)
K. Ramakrishnan, S. Floyd, D. Black, The addition of explicit congestion notification (ECN) to IP, RFC 3168 (2001), https://www.rfc-editor.org/info/rfc3168
R. Jesup, Z. Sarker, Congestion control requirements for interactive real-time media, RFC 8836 (2021), https://www.rfc-editor.org/info/rfc8836
X. Zhu, R. Pan, M. Ramalho, S. Mena, Network-assisted dynamic adaptation (NADA): a unified congestion control scheme for real-time media, RFC8698 (2020)
J. Wroclawski, Specification of the controlled-load network element service, RFC 2211 (1997), https://www.rfc-editor.org/info/rfc2211
P. Almquist, Type of service in the internet protocol suite, RFC 1349 (1992), https://www.rfc-editor.org/info/rfc1349
K. Nichols, S. Blake, F. Baker, D. Black, Definition of the differentiated services field (DS Field) in the IPv4 and IPv6 headers, RFC 2474 (1998), https://www.rfc-editor.org/info/rfc2474
B. Carpenter, B. Liu, Limited domains and internet protocols, RFC 8799 (2020), https://www.rfc-editor.org/info/rfc8799
A. Clemm, T. Eckert, High-precision latency forwarding over packet-programmable networks. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium (IEEE, 2020)
S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, G. Judd, Data center TCP (DCTCP): TCP congestion control for data centers, RFC 8257 (2017), https://www.rfc-editor.org/info/rfc8257
L. Eggert, G. Fairhurst, et al., UDP Usage Guidelines. RFC8085 (IETF, 2017)
G. Fairhurst, Network Transport Circuit Breakers. RFC8084 (IETF, 2017)
B. Carpenter, B. Liu, Limited Domains and Internet Protocols”, RFC8799 (IETF, 2020)
IEEE, Time-Sensitive Networking (TSN) Task Group, https://1.ieee802.org/tsn/
N. Finn, P. Thubert, B. Varga, J. Farkas, Deterministic networking architecture, RFC 8655 (2019), https://www.rfc-editor.org/info/rfc8655
C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, Z. Li, Segment routing over IPv6 (SRv6) network programming, RFC 8986 (2021), https://www.rfc-editor.org/info/rfc8986
3GPP TS 23.401 System architecture for the 4G System, figure 4.2.1-1, https://www.3gpp.org/ftp/Specs/archive/23_series/23.401/23401-g90.zip
3GPP TS 23.501 System architecture for the 5G System (5GS), figure 4.2.3-2, https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-g70.zip
U. Chunduri, et al., Transport Aware Mobility for 5G (2020), https://tools.ietf.org/html/draft-clt-dmm-tn-aware-mobility
Common Public Radio Interface: eCPRI Interface Specification, http://www.cpri.info/downloads/eCPRI_v_1_0_2017_08_22.pdf
I. Busse, B. Deffner, H. Schulzrinne, Dynamic QoS control of multimedia applications based on RTP. Comput Commun 19(1), 49–58 (1996)
A. Campbell, G. Coulson, D. Hutchison, A quality of service architecture. SIGCOMM Comput Commun Rev 24(2), 6–27 (1994). https://doi.org/10.1145/185595.185648
N. Yeadon, A. Mauthe, F. García, D. Hutchison, QoS filters: Addressing the heterogeneity gap, in Interactive Distributed Multimedia Systems and Services, Lecture Notes in Computer Science, ed. by B. Butscher, E. Moeller, H. Pusch, vol. 1045, (Springer, Berlin, 1996)
L. Qiang, B. Liu, T. Eckert, et al., Large-scale deterministic IP network (2019), https://tools.ietf.org/html/draft-qiang-detnet-large-scale-detnet
B. Briscoe, K. Schepper, M. Bagnulo, G. White, Low latency, low loss, scalable throughput (L4S) internet service: architecture, draft-ietf-tsvwg-l4s-arch-08 (work in progress) (2020)
A. Clemm, T. Eckert, High-precision latency forwarding over packet-programmable networks. IEEE/IFIP NOMS 2020 (2020)
SMPTE ST 2022-7-2019 seamless protection switching of RTP datagrams https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8716822
A. Atlas, C. Bowers, G. Eynedi, An architecture for IP/LDP fast-reroute using maximally redundant trees (MRT-FRR), RFC 7812 (2016), https://www.rfc-editor.org/info/rfc7812
P4 language and related specifications, http://p4.org/specs/
ISO/IEC 23009-1, https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:-1:ed-4:v1:en
A. Mauthe, F. Garcia, D. Hutchison, N. Yeadon, QoS filtering and resource reservation in an internet environment. Multimedia Tools Appl. 13, 285–306 (2001)
TS 24.401
J. Polk, S. Dhesikan, Integrated services (IntServ) extension to allow signaling of multiple traffic specifications and multiple flow specifications in RSVPv1
B. Briscoe, K. De Schepper, Resolving tensions between congestion control scaling requirements (2017), https://arxiv.org/pdf/1904.07605.pdf
https://www.ietfjournal.org/bufferbloat-dark-buffers-in-the-internet/
A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, et al., Segment routing with the MPLS data plane, RFC 8660 (2019), https://www.rfc-editor.org/info/rfc8660
X. Zhu, R. Pan, M. Ramalho, S. Mena, Network-assisted dynamic adaptation (NADA): a unified congestion control scheme for real-time media, RFC 8698 (2020), https://www.rfc-editor.org/info/rfc8698
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Eckert, T., Bryant, S. (2021). Quality of Service (QoS). In: Toy, M. (eds) Future Networks, Services and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-81961-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-81961-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81960-6
Online ISBN: 978-3-030-81961-3
eBook Packages: EngineeringEngineering (R0)