Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quality of Service (QoS)

  • Chapter
  • First Online:
Future Networks, Services and Management

Abstract

Network QoS refers to the mechanisms employed by routers and switches along the traffic path to manage throughput, loss, latency, reordering, and jitter of the traffic. Today, the Internet and many other TCP/IP networks only support the so-called best effort characteristic for traffic, which is insufficient to support the requirements of many current and, in the opinion of the authors, even more futuristic applications including real-time signalling and control, critical reliability, and application requiring any form of guarantees. While TCP/IP has seen a range of architectural options to support better than best effort service characteristic, these are often either limited in scalability, challenging to operationalize, or inflexible.

This chapter gives an overview of the current best practices of existing QoS mechanisms for TCP/IP networks, discusses gaps, and describes their applicability to different scopes of networks, such as the Internet, Home, Access-Provider, and Mobile Networks. It then suggests a longer-term evolution of the network scopes and discusses how to apply QoS in them. It then introduces a set of future QoS concepts including experience based and high-precision QoS. To enable such future QoS concepts, a future “toolkit” of architectural concepts is required in future networks, including programmability of QoS, virtualization of QoS, flexible network packet header functionality, instrumentation, and monetization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Stoica, H. Zhang, F. Baker, Y. Bernet, Per hop behaviors based on dynamic packet state, draft-stoica-diffserv-dps-02 (work in progress) (2002)

    Google Scholar 

  2. J. Postel, Internet protocol, STD 5, RFC 791, DOI 10.17487/RFC0791 (1981), https://www.rfc-editor.org/info/rfc791

  3. B. Braden, D. Clark, J. Crowcroft, et al., Recommendations on queue management and congestion avoidance in the internet, RFC 2309 (1998), https://www.rfc-editor.org/info/rfc2309

  4. E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching architecture, RFC 3031 (2001), https://www.rfc-editor.org/info/rfc3031

  5. R. Pan, P. Natarajan, F. Baker, G. White, Proportional integral controller enhanced (PIE): a lightweight control scheme to address the bufferbloat problem, RFC 8033 (2017), https://www.rfc-editor.org/info/rfc8033

  6. D. Newman, Benchmarking terminology for firewall performance. RFC 2647 (1999), https://www.rfc-editor.org/info/rfc

  7. S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP friendly rate control (TFRC): protocol specification, RFC 5348 (2008), https://www.rfc-editor.org/info/rfc5348

  8. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for differentiated services, RFC 2475, DOI 10.17487/RFC2475 (1998), https://www.rfc-editor.org/info/rfc2475

  9. Netflix and YouTube are slowing down in Europe to keep the Internet from breaking, https://edition.cnn.com/2020/03/19/tech/netflix-internet-overload-eu/index.html

  10. S. Shenker, C. Partridge, R. Guerin, Specification of guaranteed quality of service, RFC 2212, DOI 10.17487/RFC2212 (1997), https://www.rfc-editor.org/info/rfc2212

  11. L. Andersson, R. Asati, Multiprotocol label switching (MPLS) label stack entry: “EXP” field renamed to “traffic class” Field, RFC 5462, DOI 10.17487/RFC5462 (2009), https://www.rfc-editor.org/info/rfc5462

  12. F. Baker, G. Fairhurst, IETF recommendations regarding active queue management, BCP 197, RFC 7567 (2015), https://www.rfc-editor.org/info/rfc7567

  13. P. Eardley, Pre-congestion notification (PCN) Architecture, RFC 5559 (2009), https://www.rfc-editor.org/info/rfc5559

  14. S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) specification, STD 86, RFC 8200 (2017), https://www.rfc-editor.org/info/rfc8200

  15. K. Schepper, B. Briscoe, Identifying modified explicit congestion notification (ECN) semantics for ultra-low queuing delay (L4S), draft-ietf-tsvwg-ecn-l4s-id-12 (work in progress) (2020)

    Google Scholar 

  16. O. Albisser, K. De Schepper, B. Briscoe, O. Tilmans, H. Steen, DUALPI2 - low latency, low loss and scalable (L4S) AQM. Proc. Linux Netdev 0x13 (2019) https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM

  17. X. Zhu, R. Pan, N. Dukkipati, V. Subramanian, F. Bonomi, Layered internet video engineering (LIVE): network-assisted bandwidth sharing and transient loss protection for scalable video streaming. 2010 proceedings IEEE INFOCOM

    Google Scholar 

  18. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: a transport protocol for real-time applications, STD 64, RFC 3550 (2003), https://www.rfc-editor.org/info/rfc3550

  19. M. Handley, Congestion control for real-time media: history and problems, 2012 IAB workshop, https://www.iab.org/wp-content/IAB-uploads/2012/07/2-iab-cc-workshop.pdf

  20. L. Han, G. Li, B. Tu, T. Xuefei, F. Li, R. Li, J. Tantsura, K. Smith, IPv6 in-band signaling for the support of transport with QoS, draft-han-6man-in-band-signaling-for-transport-qos-00 (work in progress) (2017)

    Google Scholar 

  21. K. Ramakrishnan, S. Floyd, D. Black, The addition of explicit congestion notification (ECN) to IP, RFC 3168 (2001), https://www.rfc-editor.org/info/rfc3168

  22. R. Jesup, Z. Sarker, Congestion control requirements for interactive real-time media, RFC 8836 (2021), https://www.rfc-editor.org/info/rfc8836

  23. X. Zhu, R. Pan, M. Ramalho, S. Mena, Network-assisted dynamic adaptation (NADA): a unified congestion control scheme for real-time media, RFC8698 (2020)

    Google Scholar 

  24. J. Wroclawski, Specification of the controlled-load network element service, RFC 2211 (1997), https://www.rfc-editor.org/info/rfc2211

  25. P. Almquist, Type of service in the internet protocol suite, RFC 1349 (1992), https://www.rfc-editor.org/info/rfc1349

  26. K. Nichols, S. Blake, F. Baker, D. Black, Definition of the differentiated services field (DS Field) in the IPv4 and IPv6 headers, RFC 2474 (1998), https://www.rfc-editor.org/info/rfc2474

  27. B. Carpenter, B. Liu, Limited domains and internet protocols, RFC 8799 (2020), https://www.rfc-editor.org/info/rfc8799

  28. A. Clemm, T. Eckert, High-precision latency forwarding over packet-programmable networks. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium (IEEE, 2020)

    Google Scholar 

  29. S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, G. Judd, Data center TCP (DCTCP): TCP congestion control for data centers, RFC 8257 (2017), https://www.rfc-editor.org/info/rfc8257

  30. L. Eggert, G. Fairhurst, et al., UDP Usage Guidelines. RFC8085 (IETF, 2017)

    Google Scholar 

  31. G. Fairhurst, Network Transport Circuit Breakers. RFC8084 (IETF, 2017)

    Google Scholar 

  32. B. Carpenter, B. Liu, Limited Domains and Internet Protocols”, RFC8799 (IETF, 2020)

    Google Scholar 

  33. IEEE, Time-Sensitive Networking (TSN) Task Group, https://1.ieee802.org/tsn/

  34. N. Finn, P. Thubert, B. Varga, J. Farkas, Deterministic networking architecture, RFC 8655 (2019), https://www.rfc-editor.org/info/rfc8655

  35. C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, Z. Li, Segment routing over IPv6 (SRv6) network programming, RFC 8986 (2021), https://www.rfc-editor.org/info/rfc8986

  36. 3GPP TS 23.401 System architecture for the 4G System, figure 4.2.1-1, https://www.3gpp.org/ftp/Specs/archive/23_series/23.401/23401-g90.zip

  37. 3GPP TS 23.501 System architecture for the 5G System (5GS), figure 4.2.3-2, https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-g70.zip

  38. U. Chunduri, et al., Transport Aware Mobility for 5G (2020), https://tools.ietf.org/html/draft-clt-dmm-tn-aware-mobility

  39. Common Public Radio Interface: eCPRI Interface Specification, http://www.cpri.info/downloads/eCPRI_v_1_0_2017_08_22.pdf

  40. I. Busse, B. Deffner, H. Schulzrinne, Dynamic QoS control of multimedia applications based on RTP. Comput Commun 19(1), 49–58 (1996)

    Article  Google Scholar 

  41. A. Campbell, G. Coulson, D. Hutchison, A quality of service architecture. SIGCOMM Comput Commun Rev 24(2), 6–27 (1994). https://doi.org/10.1145/185595.185648

    Article  Google Scholar 

  42. N. Yeadon, A. Mauthe, F. García, D. Hutchison, QoS filters: Addressing the heterogeneity gap, in Interactive Distributed Multimedia Systems and Services, Lecture Notes in Computer Science, ed. by B. Butscher, E. Moeller, H. Pusch, vol. 1045, (Springer, Berlin, 1996)

    Chapter  Google Scholar 

  43. L. Qiang, B. Liu, T. Eckert, et al., Large-scale deterministic IP network (2019), https://tools.ietf.org/html/draft-qiang-detnet-large-scale-detnet

  44. B. Briscoe, K. Schepper, M. Bagnulo, G. White, Low latency, low loss, scalable throughput (L4S) internet service: architecture, draft-ietf-tsvwg-l4s-arch-08 (work in progress) (2020)

    Google Scholar 

  45. A. Clemm, T. Eckert, High-precision latency forwarding over packet-programmable networks. IEEE/IFIP NOMS 2020 (2020)

    Google Scholar 

  46. SMPTE ST 2022-7-2019 seamless protection switching of RTP datagrams https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8716822

  47. A. Atlas, C. Bowers, G. Eynedi, An architecture for IP/LDP fast-reroute using maximally redundant trees (MRT-FRR), RFC 7812 (2016), https://www.rfc-editor.org/info/rfc7812

  48. P4 language and related specifications, http://p4.org/specs/

  49. ISO/IEC 23009-1, https://www.iso.org/obp/ui/#iso:std:iso-iec:23009:-1:ed-4:v1:en

  50. A. Mauthe, F. Garcia, D. Hutchison, N. Yeadon, QoS filtering and resource reservation in an internet environment. Multimedia Tools Appl. 13, 285–306 (2001)

    Article  Google Scholar 

  51. TS 24.401

    Google Scholar 

  52. J. Polk, S. Dhesikan, Integrated services (IntServ) extension to allow signaling of multiple traffic specifications and multiple flow specifications in RSVPv1

    Google Scholar 

  53. https://www.rfi.fr/en/science-and-technology/20200320-french-telecoms-struggle-user-data-surge-netflix-cuts-quality-europe-coronavirus-lockdown-work-from-home

  54. B. Briscoe, K. De Schepper, Resolving tensions between congestion control scaling requirements (2017), https://arxiv.org/pdf/1904.07605.pdf

  55. https://www.ietfjournal.org/bufferbloat-dark-buffers-in-the-internet/

  56. A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, et al., Segment routing with the MPLS data plane, RFC 8660 (2019), https://www.rfc-editor.org/info/rfc8660

  57. X. Zhu, R. Pan, M. Ramalho, S. Mena, Network-assisted dynamic adaptation (NADA): a unified congestion control scheme for real-time media, RFC 8698 (2020), https://www.rfc-editor.org/info/rfc8698

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toerless Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckert, T., Bryant, S. (2021). Quality of Service (QoS). In: Toy, M. (eds) Future Networks, Services and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-81961-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81961-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81960-6

  • Online ISBN: 978-3-030-81961-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics