Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Study of the Correlation of Metafeatures Used for Metalearning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Abstract

Metalearning has been largely used over the last years to recommend machine learning algorithms for new problems based on past experience. For such, the first step is the creation of metabase, or metadataset, containing metafeatures extracted from several datasets along with the performance of a pool of candidate algorithm(s). The next step is the induction of machine learning metamodels using the metabase as input. These models can recommend the most suitable algorithms for new datasets based on their metafeatures values. An effective metalearning system must employ metafeatures that characterize essential aspects of the datasets while also distinguishing different problems and solutions. The characterization process should also show a low computational cost, otherwise, the recommendation system can be replaced by a standard trial-and-error approach. This paper proposes the use of an unsupervised correlation-based feature selection strategy to identify a reduced subset of metafeatures for metalearning systems. Empirically, the predictive performance achieved by metalearning systems using the subset of selected metafeatures is similar or better than the performance obtained using the whole set of metafeatures. In addition, a noteworthy reduction in the number of metafeatures needed is observed, implying computational cost reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcobaca, E., Siqueira, F., Rivolli, A., Garcia, L.P.F., Oliva, J.T., de Carvalho, A.C.P.L.F.: Mfe: towards reproducible meta-feature extraction. J. Mach. Learn. Res. 21(111), 1–5 (2020)

    Google Scholar 

  2. Bensusan, H., Kalousis, A.: Estimating the predictive accuracy of a classifier. In: 12th European Conference on Machine Learning (ECML), vol. 2167, pp. 25–36 (2001)

    Google Scholar 

  3. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning - Applications to Data Mining, 1st edn. Cognitive Technologies, Springer (2009)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks (1984)

    Google Scholar 

  6. ChristianKopf, I.I.: Combination of task description strategies and case base properties for meta-learning. In: Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning (IDDM), pp. 65–76 (2002)

    Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  9. Fernández, S.S., Ochoa, J.A.C., Martínez-Trinidad, J.F.: A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2020)

    Article  Google Scholar 

  10. Filchenkov, A., Pendryak, A.: Datasets meta-feature description for recommending feature selection algorithm. Artif. Intell. Nat. Lang. Inform. Extract. Soc. Media Web Search 7, 11–18 (2015)

    Google Scholar 

  11. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice Hall, Hoboken (1999)

    Google Scholar 

  12. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)

    Article  Google Scholar 

  13. Mantovani, R., Rossi, A., Alcobaça, E., Vanschoren, J., de Carvalho, A.: A meta-learning recommender system for hyperparameter tuning: predicting when tuning improves svm classifiers. Inform. Sci. 501, 193–221 (2019)

    Article  Google Scholar 

  14. Mitchell, T.M.: Machine Learning. McGraw Hill series in computer science, McGraw Hill, New York (1997)

    Google Scholar 

  15. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for machine learning classification. Mach. Learn. 107(1), 109–147 (2018)

    Article  Google Scholar 

  16. Pinto, F., Soares, C., Mendes-Moreira, J.: Towards automatic generation of metafeatures. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 215–226 (2016)

    Google Scholar 

  17. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  18. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2014)

    Article  Google Scholar 

  19. Rice, J.: The algorithm selection problem. Adv. Comp. 15, 65–118 (1976)

    Article  Google Scholar 

  20. Rivolli, A., Garcia, L., Soares, C., Vanschoren, J., de Carvalho, A.: Towards reproducible empirical research in meta-learning. arXiv 1(1808.10406), 1–41 (2019)

    Google Scholar 

  21. Sá, J.D., Rossi, A., Batista, G., Garcia, L.P.: Algorithm recommendation for data streams. In: 25th International Conference on Pattern Recognition, pp. 1–6 (2021)

    Google Scholar 

  22. Schelter, S., Whang, S., Stoyanovich, J. (eds.): Proceedings of the Fourth Workshop on Data Management for End-To-End Machine Learning, In Conjunction with the 2020 ACM SIGMOD/PODS Conference (2020)

    Google Scholar 

  23. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2008)

    Article  Google Scholar 

  24. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the São Paulo Research Foundation (FAPESP), grant 2013/07375-0 (CEPID CeMEAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Rivolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rivolli, A., Garcia, L.P.F., Lorena, A.C., de Carvalho, A.C.P.L.F. (2021). A Study of the Correlation of Metafeatures Used for Metalearning. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics