Abstract
It is well known that for a regular tree language it is decidable whether or not it can be recognized by a deterministic top-down tree automaton (DTA). However, the computational complexity of this problem has not been studied. We show that for a given deterministic bottom-up tree automaton it can be decided in quadratic time whether or not its language can be recognized by a DTA. Since there are finite tree languages that cannot be recognized by DTAs, we also consider finite unions of DTAs and show that also here, definability within deterministic bottom-up tree automata is decidable in quadratic time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brainerd, W.S.: The minimalization of tree automata. Inf. Control 13(5), 484–491 (1968)
Carrasco, R.C., Daciuk, J., Forcada, M.L.: An implementation of deterministic tree automata minimization. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 122–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_13
Comon, H., et al.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. Accessed 12 October 2007
Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 68–79. Springer, Heidelberg (2005). https://doi.org/10.1007/11537311_7
Gécseg, F., Steinby, M.: Tree automata. Akadéniai Kiadó, Budapest (1984)
Gelade, W., Idziaszek, T., Martens, W., Neven, F., Paredaens, J.: Simplifying XML schema: single-type approximations of regular tree languages. J. Comput. Syst. Sci. 79(6), 910–936 (2013)
Harrison, M.A., Yehudai, A.: Eliminating null rules in linear time. Comput. J. 24(2), 156–161 (1981)
Kozen, D.: On the Myhill-Nerode theorem theorem for trees. Bull. EATCS 47, 170–173 (1992)
Leupold, P., Maneth, S.: Deciding top-down determinism of regular tree languages. ArXiv e-prints 2107.03174 (2021). https://arxiv.org/abs/2107.03174
Maneth, S., Seidl, H.: When is a bottom-up deterministic tree translation top-down deterministic? In: ICALP, pp. 134:1–134:18 (2020)
Martens, W.: Static analysis of XML transformation and schema languages. Ph.D. thesis, Hasselt University (2006)
Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata: past, present, and future. In: Logic and Automata: History and Perspectives, pp. 505–530 (2008)
Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)
Myhill, J.: Finite automata and the representation of events. Technical report 57–264, WADC (1957)
Nerode, A.: Linear automaton transformations. Proc. AMS 9, 541–544 (1958)
Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM J. Comput. 26(1), 39–58 (1997). https://doi.org/10.1137/S0097539789164078
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
Virágh, J.: Deterministic ascending tree automata I. Acta Cyb. 5(1), 33–42 (1980)
Acknowledgment
We are grateful to Wim Martens, Helmut Seidl, Magnus Steinby, and Martin Lange for pointing us to some of the literature.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Leupold, P., Maneth, S. (2021). Deciding Top-Down Determinism of Regular Tree Languages. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-86593-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86592-4
Online ISBN: 978-3-030-86593-1
eBook Packages: Computer ScienceComputer Science (R0)