Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deciding Top-Down Determinism of Regular Tree Languages

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12867))

Included in the following conference series:

Abstract

It is well known that for a regular tree language it is decidable whether or not it can be recognized by a deterministic top-down tree automaton (DTA). However, the computational complexity of this problem has not been studied. We show that for a given deterministic bottom-up tree automaton it can be decided in quadratic time whether or not its language can be recognized by a DTA. Since there are finite tree languages that cannot be recognized by DTAs, we also consider finite unions of DTAs and show that also here, definability within deterministic bottom-up tree automata is decidable in quadratic time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brainerd, W.S.: The minimalization of tree automata. Inf. Control 13(5), 484–491 (1968)

    Article  MathSciNet  Google Scholar 

  2. Carrasco, R.C., Daciuk, J., Forcada, M.L.: An implementation of deterministic tree automata minimization. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 122–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_13

    Chapter  MATH  Google Scholar 

  3. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. Accessed 12 October 2007

  4. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 68–79. Springer, Heidelberg (2005). https://doi.org/10.1007/11537311_7

    Chapter  Google Scholar 

  5. Gécseg, F., Steinby, M.: Tree automata. Akadéniai Kiadó, Budapest (1984)

    Google Scholar 

  6. Gelade, W., Idziaszek, T., Martens, W., Neven, F., Paredaens, J.: Simplifying XML schema: single-type approximations of regular tree languages. J. Comput. Syst. Sci. 79(6), 910–936 (2013)

    Article  MathSciNet  Google Scholar 

  7. Harrison, M.A., Yehudai, A.: Eliminating null rules in linear time. Comput. J. 24(2), 156–161 (1981)

    Article  MathSciNet  Google Scholar 

  8. Kozen, D.: On the Myhill-Nerode theorem theorem for trees. Bull. EATCS 47, 170–173 (1992)

    MATH  Google Scholar 

  9. Leupold, P., Maneth, S.: Deciding top-down determinism of regular tree languages. ArXiv e-prints 2107.03174 (2021). https://arxiv.org/abs/2107.03174

  10. Maneth, S., Seidl, H.: When is a bottom-up deterministic tree translation top-down deterministic? In: ICALP, pp. 134:1–134:18 (2020)

    Google Scholar 

  11. Martens, W.: Static analysis of XML transformation and schema languages. Ph.D. thesis, Hasselt University (2006)

    Google Scholar 

  12. Martens, W., Neven, F., Schwentick, T.: Deterministic top-down tree automata: past, present, and future. In: Logic and Automata: History and Perspectives, pp. 505–530 (2008)

    Google Scholar 

  13. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

    Article  Google Scholar 

  14. Myhill, J.: Finite automata and the representation of events. Technical report 57–264, WADC (1957)

    Google Scholar 

  15. Nerode, A.: Linear automaton transformations. Proc. AMS 9, 541–544 (1958)

    Article  MathSciNet  Google Scholar 

  16. Nivat, M., Podelski, A.: Minimal ascending and descending tree automata. SIAM J. Comput. 26(1), 39–58 (1997). https://doi.org/10.1137/S0097539789164078

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  18. Virágh, J.: Deterministic ascending tree automata I. Acta Cyb. 5(1), 33–42 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We are grateful to Wim Martens, Helmut Seidl, Magnus Steinby, and Martin Lange for pointing us to some of the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Leupold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leupold, P., Maneth, S. (2021). Deciding Top-Down Determinism of Regular Tree Languages. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics