Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Plant Growth Promoting Bacteria: Aspects in Metal Bioremediation and Phytopathogen Management

  • Chapter
  • First Online:
Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management

Abstract

Environmentally unsustainable human activities have been linked to a significant loss in usable areas of soil, water, and air, often contaminated by numerous harmful chemicals, including heavy metals. The physicochemical composition of the soil, in turn, interferes and is affected by a multitude of genetically distinct microorganisms that reside in it and interact with plants, through different ecological strategies (competitive, exploiting, neutral, commensal, mutualistic). Non-pathogenic, free-living soil bacteria, which can be rhizospheric and become endophytic, belong to one of the three categories: those that exclusively promote plant growth (PGPB), those that do the same but also control phytopathogens (PGPB-PC) and PGPB that also regulate biotic and abiotic stress in plants (PGSRB). The soils that agribusinesses use directly in their crops or in pots in the greenhouse usually receive various chemical products and/or irrigation with wastewater containing heavy metals. However, these soils are usually cultivated with plants in symbiosis with endophytes, which either mineralize these contaminants or favor their accumulation or co-metabolization. It means that these bacteria readily express the genes that allow them to show all these characteristics during their multiplication in the hosts—an advantage over other bacteria that inhabit the plants endosphere. Thus, the improvement in the production and application of microorganisms, especially if they are PGPB, capable of removing such metals and controlling phytopathogens, represents the availability of an eco-efficient technology compatible with sustainability. The purpose of this chapter was to review the knowledge of the last three decades about the symbiotic relationships of bacteria with plants, especially with regard to their competition with phytopathogens and the decontamination of soils containing heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash P, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Afzal I, Shinwari Z, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  PubMed  Google Scholar 

  • Afzal I, Javed T, Amirkhani M, Taylor AG (2020) Modern seed technology: seed coating delivery systems for enhancing seed and crop performance. Agriculture 10(11):526

    Article  CAS  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOAB J 3:39–46

    CAS  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5(2):111–121

    Article  PubMed  Google Scholar 

  • Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12(7):1365–1377

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Naseer M, Sajad MA (2012) Phytoremediation of heavy metals by Trifolium alexandrinum. Int J Environ Sci 2:1459–1469

    CAS  Google Scholar 

  • Ali A, Guo D, Mahar A (2017) Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities. Sci Rep 7:46087

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals in soils. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E et al (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Arif N, Vaishali Y, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:69

    Article  Google Scholar 

  • Armienta MA, Beltrán M, Martínez S, Labastida I (2020) Heavy metal assimilation in maize (Zea mays L.) plants growing near mine tailings. Environ Geochem Health 42:2361–2375

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Askar A, Shoujun Y, Abbasi MW, Azeem M, Hamayun M, Rauf M, Shah M, Tariq M, Dong R, Gul H (2020) Isolation and evaluation of halotolerant rhizobacteria from Xanthium strumarium l. as plant growth promoting rhizobacteria. Pak J Bot 52(3):1097–1104

    Article  Google Scholar 

  • Barberon M, Geldner N (2014) Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol 166:528–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Benavides LCL, Pinilla LAC, Serrezuela RR, Serrezuela WFR (2018) Extraction in laboratory of heavy metals through rhizofiltration using the plant Zea mays (maize). Int J Appl Environ Sci 13(1):9–26

    Google Scholar 

  • Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F (2008) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res Int 16:42–53

    Article  PubMed  CAS  Google Scholar 

  • Boisson S, Stradic SL, Collignon J, Séleck M, Malaisse F, Shutcha MN, Faucon M, Mahy G (2016) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in south DR Congo. Poaceae candidates for phytostabilization. Environ Sci Pollut Res 23:13693–13705

    Article  CAS  Google Scholar 

  • Bouwman LA, Bloem J, Römkens PFAM, Japenga J (2005) EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes. Soil Biol Biochem 37(2):271–278

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut 6:261–279

    Article  CAS  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Cesare AD, Eckert EM, D’Urso S, Bertoni R, Gillan DC, Wattiez R et al (2016) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 94:208–214

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Jiang Y, Huang H, Mou L, Ru J, Zhao J et al (2018) Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci Total Environ 637–638:1400–1412

    Article  PubMed  CAS  Google Scholar 

  • Cipriani HN, Dias LE, Costa MD, Campos NV, Azevedo AA, Gomes RJ, Fialho IF, Amezquita SPM (2013) Arsenic toxicity in Acacia mangium willd. and Mimosa caesalpiniaefolia benth. seedlings. Rev Bras Ciênc Solo 37(5):1423–1430

    Article  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, Larke-Mejia NL, Emery H, Dawson R, Pratscher J, Murphy GP, McGenity TJ, Murrel JC (2018) Poplar phyllosphere harbors disparate isoprene-degrading bacteria. PNAS 115(51):13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska G, Hrynkiewicz K, Trejgell A, Baum C (2017) The effect of plant growth-promoting rhizobacteria on the phytoextraction of cd and Zn by Brassica napus L. Int J Phytoremediation 19(7):597–604

    Article  CAS  PubMed  Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983

    Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21(4):2642–2653

    Article  CAS  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions, 3rd edn. Kluwer Academic, New York, p 656

    Book  Google Scholar 

  • de los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, Peña-Cabriales JJ (2012) Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World J Microbiol Biotechnol 28(8):2615–2623

    Google Scholar 

  • de los Santos-Villalobos S, Cota FIP, Sepúlveda AH, Aragón BV, Mora JCE (2018a) Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. Rev Mex Ciencias Agríc 9(1):191–202

    Google Scholar 

  • de los Santos-Villalobos S, Kremer JM, Parra-Cota FI, Hayano-Kanashiro AC, García-Ortega LF, Gunturu SK, Peña-Cabriales JJ (2018b) Draft genome of the fungicidal biological control agent Burkholderia anthina strain XXVI. Arch Microbiol 200(5):803–810

    Article  CAS  Google Scholar 

  • de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, Gonzáles-Guerrero M, Araújo LM, Verza NC, Bagueri HC, Imperial J, Arruda P (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuča K, Islam MT, Verma R (2020) Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 10(6):815

    Article  CAS  Google Scholar 

  • Ding T, Melcher U (2016) Influences of plant species, season, and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One 11(3):e0150895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015(1):1–18

    Article  Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B (eds) Poisoning in the modern world-new tricks for an old dog?

    Google Scholar 

  • Erdei L, Mezôsi G, Mécs I, Vass I, Fôglein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis 49(1–2):75–76

    Google Scholar 

  • Ernst WH (2005) Phytoextraction of mine wastes–options and impossibilities. Chem Erde Geochem 65:29–42

    Article  CAS  Google Scholar 

  • Escribano-Viana R, Portu J, Garijo P, Gutierrez AR, Santamaría P, López-Alfaro I, López R, González-Arenzana L (2018) Evaluating a preventive biological control agent applied on grapevines against Botrytis cinerea and its influence on winemaking. J Sci Food Agric 98:4517–4526

    Article  CAS  PubMed  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri ME, Bogusz D et al (2013) Effect of lead on root growth. Front Plant Sci 4:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Frederiks C, Wesseler JH (2019) A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Manag Sci 75(1):87–103

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:3–22

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  PubMed  Google Scholar 

  • Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845

    Article  CAS  PubMed  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P et al (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobelak A, Napora A, Kacprzak M (2014) The impact of plant growth promoting bacteria (PGPB) on the development of phytopathogenic fungi. Fol Biol Oecol 10:107–112

    Google Scholar 

  • Gropper SAS, Smith JL, Carr TP (2018) Advanced nutrition and human metabolism, 7th edn. Cengage Learning, Boston, MA, p 640

    Google Scholar 

  • Guarino F, Miranda A, Castiglione S, Cicatelli A (2020) Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251:126310

    Article  CAS  PubMed  Google Scholar 

  • Haddad SA, Tabatabai MA, Abdel-Moneim A-MA, Loynachan TE (2015) Inhibition of nodulation and nitrogen nutrition of leguminous crops by selected heavy metals. Air Soil Water Res 8(1):1–7

    CAS  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri a1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Tabassum B, Abd Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  PubMed  Google Scholar 

  • Hazrat A, Ezzat K, Muhammad AS (2013) Phytoremediation of heavy metals—concepts and applications. J Chem 91(7):869–881

    Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumlation in Orychophragmus violaceus. Appl Soil Ecol 44(1):1–5

    Article  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Perez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  CAS  Google Scholar 

  • Herpell JB, Schindler F, Bejtovíc M, Fragner L, Diallo B, Bellaire A, Kublik S, Foesel BU, Gschwendtner S, Kerou M, Schloter M, Weckwerth W (2020) The potato yam phyllosphere ectosymbiont Paraburkholderia sp. Msb3 is a potent growth promotor in tomato. Front Microbiol 11:581

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T, Buszewski B (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 26(3):316–332

    Article  CAS  Google Scholar 

  • Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaschl A, Römheld V, Chen Y (2002) Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J Environ Qual 31:1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019a) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Köhl J, Booij K, Kolnaar R et al (2019b) Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl 64:469–487

    Article  Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

    Article  CAS  PubMed  Google Scholar 

  • Konkolewska A, Piechalak A, Ciszewska L (2020) Uso combinado de plantio companheiro e PGPR para a fitoextração assistida de metais traço (Zn, Pb, Cd). Environ Sci Pollut Res 27:13809–13825

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: its implications for phytoremediation. Environ Rev 24. https://doi.org/10.1139/er-2015-0010

  • Kuzmicheva YV, Shaposhnikov AI, Petrova SN, Makarova NM, Tychinskaya IL, Puhalsky JV, Parahin NV, Tikhonovich IA, Belimov AA (2017) Variety specific relationships between effects of rhizobacteria on root exudation, growth, and nutrient uptake of soybean. Plant and Soil 419:83–96

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31(1):109–120

    CAS  PubMed  Google Scholar 

  • Liu X, Mohammed B, Yingxin M, Henry M, Ovadis M, Leo E, Berg B, Chernin L (2006) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. Microbiol Lett 270(2):299–305

    Article  CAS  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017a) Inner plant values: diversity, colonization, and benefits from endophytic bacteria. Front Microbiol 8:1–17

    Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017b) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107(8):928–936

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • López SMY, Pastorino GN, Fernández-González AJ, Franco MEE, Fernández-López M, Balatti PA (2020) The endosphere bacteriome of diseased and healthy tomato plants. Arch Microbiol 202(10):2629–2642

    Article  PubMed  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Mansourri G, Madani M (2016) Examination of the level of heavy metals in wastewater of Bandar Abbas wastewater treatment plant. Open J Ecol 06(02):55–61

    Article  Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. In: Saleh H, Aglan RFES (eds) Heavy metals, chap. 7, IntechOpen. https://doi.org/10.5772/intechopen.76082. https://www.intechopen.com/chapters/60680

  • Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt JA (2020) Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J 14(1):245–258

    Article  CAS  PubMed  Google Scholar 

  • Matse DT, Huang CH, Huang YM, Yen MY (2020) Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J Plant Nutr 43(5):739–752

    Article  CAS  Google Scholar 

  • Memon AR, Aktoprakligil S, Ôzdemir A, Vertii A (2000) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25(3):111–121

    Google Scholar 

  • Mendoza-Hernández JC, Perea-Vélez YS, Arriola-Morales J, Martínez-Simón SM, Pérez-Osorio G (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61

    Google Scholar 

  • Miller RR (1996) Phytoremediation. Technology overview report Ed GWRTALC O Series: TO-96-03

    Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: beneficial effects of the mycorrhizal fungi for plant growth. J App Environ Biol Sci 1(9):310–319

    Google Scholar 

  • Morcillo RJL, Singh SK, He D, Ji V, Kaushal R, Wang W, Huang W, Paré PW, Zhang H (2020) Bacteria-derived diacetyl enhances Arabidopsis phosphate starvation responses partially through the DELLA-dependent gibberellin signaling pathway. Plant Signal Behav 15(4):1740872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324

    Article  Google Scholar 

  • Orozco-Mosqueda MC, del Carmen R-GM, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Mosqueda MC, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  CAS  PubMed  Google Scholar 

  • Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the as (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Ren XM, Guo SJ, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen ZJ (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in cu-contaminated agricultural soil. Front Microbiol 10:1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Revoredo MD, de Melo WJ (2006) Availability of nickel in soil treated with sewage sludge and cultivated with sorghum. Bragantia 65(4):679–685

    Article  CAS  Google Scholar 

  • Richard W, Krumholz GD, Mathew SC, Tisa LS (2002) Heavy metal resistance pattern of Frankia strains. Appl Environ Microbiol 68(2):923–927

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J-M, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodríguez-Sánchez V, Guzmán-Moreno J, Rodríguez-González V (2017) Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J Microbiol Biotechnol 33:150

    Article  PubMed  CAS  Google Scholar 

  • Román-Ponce B, Reza-Vázquez DM, Gutiérrez-Paredes S, De Haro Cruz MJ, Maldonado-Hernández J, Bahena-Osorio Y, Estrada-de los Santos P, Wang ET, Vásquez-Murrieta MS (2017) Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27(3):511–526

    Article  CAS  Google Scholar 

  • Rue M, Paul ALD, Echevarria G, van der Ent A, Simonnot MO, Morel JL (2020) Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics 12:1278–1289

    Article  CAS  PubMed  Google Scholar 

  • Ruiu L (2020) Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy 10(6):861–873

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin L (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Cruz ND, Meza-Contreras JC, Escalante FME, Macías-Rodríguez ME, Salcedo-Perez E, González-García Y (2020) Phosphate solubilization and indole-like compounds production by bacteria isolated from forest soil with plant growth promoting activity on pine seedlings. Geomicrobiology 37(10):909–918

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of bacillus and pseudomonas: a review. Biocon Sci Technol 22(8):855–872

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick B (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Pacheco CH, Salmerón JH, León RH (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Span J Agric Res 15(1):15

    Article  Google Scholar 

  • Santoyo G, Sánchez-Yáñez JM, de los Santos-Villalobos S (2019) Methods for detecting biocontrol and plant growth-promoting traits in rhizobacteria. In: Methods in rhizosphere biology research, vol 1. Springer, Berlin, pp 133–149

    Chapter  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Glick BR (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  PubMed  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil 249:27–35

    Article  CAS  Google Scholar 

  • Shabani L, Sabzalian MR, Pour SM (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Equip 31(3):446–459

    Google Scholar 

  • Sharma R, Singh D, Sing R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50(3):205–221

    Article  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Article  Google Scholar 

  • Shawai SA, Muktar HI, Bataiya AG, Abdullahi II, Shamsuddin IM, Yahaya AS, Suleiman M (2017) A review on heavy metals contamination in water and soil: effects, sources, and phytoremediation techniques. Int J Miner Process Extract Metall 2(2):21–27

    CAS  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:219462

    Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Solanki MK, Yandigeri M, Kumar S, Singh RK, Srivastava AK (2019) Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato. Antonie Van Leeuwenhoek 112(11):1633–1644

    Article  CAS  PubMed  Google Scholar 

  • Sun GL, Reynolds EE, Belcher AM (2019) Designing yeast as plant-like hyperaccumulators for heavy metals. Nat Commun 10:5080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Fan Q, Ma J, Cui L, Quan G, Yan J, Wu L, Hina K, Abdul B, Wang H (2020) Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil. Environ Pollut Bioavail 32:36–46

    Article  CAS  Google Scholar 

  • Tamás M, Sharma S, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4(1):252–267

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Mol Clin Environ Toxicol 101:133–164

    Article  Google Scholar 

  • Thomas P, Sekhar AC (2016) Effects due to rhizospheric soil application of an antagonistic bacterial endophyte on native bacterial community and its survival in soil: a case study with Pseudomonas aeruginosa from banana. Front Microbiol 7:493

    PubMed  PubMed Central  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L et al (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Timoney JF, Port J, Giles J, Spanier J (1987) Heavy metal and antibiotic resistance in the bacterial flora of sediments of New York bight. Appl Environ Microbiol 36(3):465–472

    Article  Google Scholar 

  • Tirry N, Jouteiy NT, Sayel H, Kouchou A, Bahafid W, Asri M, El Ghachtouli N (2018) Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. J Genet Eng Biotechnol 16(2):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Ullah S, Ashraf M, Asghar HN, Iqbal Z, Ali R (2019) Plant growth promoting rhizobacteria mediated amelioration of drought in crop plants: a review. Soil & Environm 38:1–20

    Article  CAS  Google Scholar 

  • Vilanova L, Teixidó N, Usall J, Balsells-Llauradó M, GotorVila A, Torres R (2018) Environmental fate and behaviour of the biocontrol agent Bacillus amyloliquefaciens CPA-8 after preharvest application to stone fruit. Pest Manag Sci 74:375–383

    Article  CAS  PubMed  Google Scholar 

  • Villa-Rodriguez E, Parra-Cota F, Castro-Longoria E, López-Cervantes J, de los Santos-Villalobos S (2019) Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biol Control 132:135–143

    Google Scholar 

  • Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, de los Santos-Villalobos S (2018) The genus bacillus as a biological control agent and its implications in the agricultural biosecurity. Mex J Phytopathol 36(1):95–130

    Google Scholar 

  • Weyens N, Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant—microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Yamina B, Tahar B, Fardeau M (2012) Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Sci Technol 66(10):2041–2048

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  PubMed  Google Scholar 

  • Zarei T, Moradi A, Kazemeini S, Akhgar A, Rahi A (2020) The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Sci Rep 10:20361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed AM, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206(2):284–292

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hendrickson RC, Meikle V, Lefkowitz EJ, Ioerger TR, Niederweis M (2020) Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog 16(2):e1008337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S-C, Yu Z-X, Zhao L, Qi X, Wei T (2016) Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction. Front Plant Sci 7:24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Queijeiro Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez, A.M.Q., Silva, A.L.D.S., Maranhão, F.C.D.A., Ferreira, L.F.R. (2022). Plant Growth Promoting Bacteria: Aspects in Metal Bioremediation and Phytopathogen Management. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_3

Download citation

Publish with us

Policies and ethics