Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Relevant Epistemic Logic with Public Announcements and Common Knowledge

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13040))

Included in the following conference series:

  • 828 Accesses

Abstract

Building on our previous work in non-classical dynamic epistemic logic, we add common knowledge operators to a version of public announcement logic based on the relevant logic \(\mathsf {R}\). We prove a completeness result with respect to a relational semantics, and we show that an alternative semantics based on information states is dual to the relational one. We add a question-forming inquisitive disjunction operator to the language and prove a completeness result with respect to the information semantics. It is argued that relevant public announcements are particularly suitable for modelling public argumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that while “announcement” seem to us to best express the notion we have in mind, we have hesitated because of its technical connotations. Another term that may be used is “reception” – upon an announcement agents receive a piece of information, but nothing is implied about the nature of the information nor about what the agents make of it.

  2. 2.

    Note that this notation is somewhat misleading as \(E^{*}(A)\) does not denote the reflexive transitive closure of E(A).

  3. 3.

    This reading is related to a number of interpretations of R popular in the relevant logic literature. For instance, Dunn and Restall point out that “perhaps the best reading [of Rstu] is to say that the combination of the pieces of information s and t (not necessarily the union) is a piece of information in u” [8, p. 67]. Restall adds that “a body of information warrants \(\varphi \rightarrow \psi \) if and only if whenever you update that information with new information which warrants \(\varphi \), the resulting (perhaps new) body of information warrants \(\psi \)” [17, p. 362] (notation adjusted).

  4. 4.

    In [6] issues were introduced in the context of standard inquisitive epistemic logic based on classical logic. In [16] issues were introduced in the semantics of substructural inquisitive epistemic logic.

  5. 5.

    The inquisitive analogue of \(B_a\) is a standard modality in inquisitive epistemic logic usually denoted as \(E_a\) (see [6]). The inquisitive analogue of \(C_A\) was introduced semantically in [5] in the context of standard inquisitive epistemic logic without an axiomatic characterization.

References

  1. Balbiani, P., Galmiche, D.: About intuitionistic public announcement logic. In: Beklemishev, L., Demri, S., Máté, A. (eds.) Proceedings of 11th International Conference on Advances in Modal Logic (AiML 2016), pp. 97–116. College Publications (2016)

    Google Scholar 

  2. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  3. Bílková, M., Majer, O., Peliš, M.: Epistemic logics for sceptical agents. J. Log. Comput. 26(6), 1815–1841 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cabrer, L., Rivieccio, U., Rodriguez, R.O.: Łukasiewicz public announcement logic. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 108–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0_10

    Chapter  Google Scholar 

  5. Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam (2016)

    Google Scholar 

  6. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192(6), 1643–1687 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford University Press, Oxford (2019)

    MATH  Google Scholar 

  8. Dunn, J.M., Restall, G.: Relevance logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 6, pp. 1–128. Kluwer (2002)

    Google Scholar 

  9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Levesque, H.: A logic of implicit and explicit belief. In: Proceedings of AAAI 1984, pp. 198–202 (1984)

    Google Scholar 

  11. Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model completeness for intuitionistic public announcement logic. Ann. Pure Appl. Log. 165(4), 963–995 (2014)

    Article  MathSciNet  Google Scholar 

  12. Plaza, J.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., Ras, W.Z. (eds.) Proceedings of 4th International Symposium on Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216. Oak Ridge National Laboratory (1989)

    Google Scholar 

  13. Punčochář, V.: Substructural inquisitive logics. Rev. Symb. Log. 12, 296–330 (2019)

    Article  MathSciNet  Google Scholar 

  14. Punčochář, V.: Inquisitive dynamic epistemic logic in a non-classical setting. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_13

    Chapter  MATH  Google Scholar 

  15. Punčochář, V.: A relevant logic of questions. J. Philos. Log. 49(5), 905–939 (2020)

    Article  MathSciNet  Google Scholar 

  16. Punčochář, V., Sedlár, I.: Epistemic extensions of substructural inquisitive logics. J. Log. Comput. (2020). First Online

    Google Scholar 

  17. Restall, G.: Relevant and substructural logics. In: Hanbook of the History of Logic, vol. 7, pp. 289–398. Elsevier (2006)

    Google Scholar 

  18. Rivieccio, U.: Bilattice public announcement logic. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in Modal Logic 2014, pp. 459–477. College Publications (2014)

    Google Scholar 

  19. Routley, R., Routley, V.: The role of inconsistent and incomplete theories in the logic of belief. Comm. Cogn. 8(2/4), 185–235 (1975)

    Google Scholar 

  20. Santos, Y.D.: A four-valued dynamic epistemic logic. J. Log. Lang. Inf. 29(4), 451–489 (2020)

    Google Scholar 

  21. Sedlár, I.: Substructural epistemic logics. J. Appl. Non-Classical Log. 25(3), 256–285 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sedlár, I.: Epistemic extensions of modal distributive substructural logics. J. Log. Comput. 26(6), 1787–1813 (2016)

    Article  MathSciNet  Google Scholar 

  23. Sedlár, I.: A general completeness argument for propositional dynamic logic. In: Advances in Modal Logic 2020, Short Papers, pp. 102–106 (2020)

    Google Scholar 

  24. Sedlár, I.: Relational semantics for propositional dynamic logics. Submitted manuscript, June 2021

    Google Scholar 

  25. Sedlár, I., Tedder, A.: Situated epistemic updates. In: Proceedings of LORI-VIII (2021, to appear)

    Google Scholar 

  26. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-5839-4

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the Czech Science Foundation grant number GJ18-19162Y. We thank three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sedlár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Punčochář, V., Sedlár, I. (2021). Relevant Epistemic Logic with Public Announcements and Common Knowledge. In: Baroni, P., Benzmüller, C., Wáng, Y.N. (eds) Logic and Argumentation. CLAR 2021. Lecture Notes in Computer Science(), vol 13040. Springer, Cham. https://doi.org/10.1007/978-3-030-89391-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89391-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89390-3

  • Online ISBN: 978-3-030-89391-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics