Abstract
Zero-Knowledge Proof (ZKP) is a cryptographic technique that enables a prover to convince a verifier that a given statement is true without revealing any information other than its truth. It is known that ZKP can be realized by physical objects such as a deck of cards; recently, many such “card-based” ZKP protocols for pencil puzzles (such as Sudoku and Numberlink) have been devised. In this paper, we shift our attention to graph theory problems from pencil puzzles: We propose card-based ZKP protocols for the graph 3-coloring problem and the graph isomorphism problem. Similar to most of the existing card-based ZKP protocols, our two protocols have no soundness error. The proposed protocols can be implemented without any technical knowledge, and the principle of zero-knowledge proof is easy to understand. In particular, our protocol for the graph isomorphism problem requires only three shuffles regardless of the sizes of a pair of given graphs. In addition, to deal with our proposed protocols more rigorously, we present a formal framework for card-based ZKP protocols which are non-interactive and have no soundness error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An encoding rule representing a positive integer in this manner was first considered by Shinagawa et al. in 2015 [31].
- 2.
One might think that the resulting order could be easily known because there are only six possibilities. One possible implementation is to put piles of cards into a box or ball whose inside is invisible from outside and then throw it up to randomize the order of them (cf. [32]).
- 3.
All other sequences in U start with illegal witness subsequences.
- 4.
References
Babai, L.: Graph isomorphism in quasipolynomial time. In: ACM Symposium on Theory of Computing, STOC 2016, ACM, New York, pp. 684–697 (2016). https://doi.org/10.1145/2897518.2897542
Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) Fun with Algorithms, Schloss Dagstuhl, Dagstuhl, LIPIcs, vol. 49, pp. 8:1–8:20 (2016). https://doi.org/10.4230/LIPIcs.FUN.2016.8
Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8
Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27
Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14
Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1
Godsil, C., Royle, G.F.: Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 690–728 (1991). https://doi.org/10.1145/116825.116852
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012
Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9
Grohe, M., Schweitzer, P.: The graph isomorphism problem. Commun. ACM 63(11), 128–134 (2020). https://doi.org/10.1145/3372123
Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2019). https://doi.org/10.5445/IR/1000097756
Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/s00354-020-00120-0
Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop” condition. Theoret. Comput. Sci. (2021). https://doi.org/10.1016/j.tcs.2021.07.019, in press
Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms, Schloss Dagstuhl, Dagstuhl, LIPIcs, vol. 157, pp. 20:1–20:21 (2020). https://doi.org/10.4230/LIPIcs.FUN.2021.20
Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/s10207-013-0219-4
Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36
Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theoret. Comput. Sci. 191(1–2), 173–183 (1998). https://doi.org/10.1016/S0304-3975(97)00107-2
Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Gener. Comput. 39(1), 19–40 (2021). https://doi.org/10.1007/s00354-020-00113-z
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: applications to Nurikabe and Hitori. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds.) CiE 2021. LNCS, vol. 12813, pp. 373–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80049-9_37
Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. In: Computing and Combinatorics. LNCS, Springer, Cham (2021, to appear)
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for connected spanning subgraph problem and Bridges puzzle (2020). https://arxiv.org/abs/2011.02313
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021). https://doi.org/10.1007/s00354-020-00114-y
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_24
Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to Bridges puzzle and other problems. In: Unconventional Computation and Natural Computation. LNCS, Springer, Cham (2021, to appear)
Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theoret. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.1016/j.tcs.2020.05.036
Shinagawa, K.: On the construction of easy to perform card-based protocols. Ph.D. thesis, Tokyo Institute of Technology (2020)
Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using regular polygon cards. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 127–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_7
Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2019). https://doi.org/10.1007/s10207-019-00463-w
Acknowledgements
We thank the anonymous referees, whose comments have helped us improve the presentation of the paper. We would like to thank Hideaki Sone for his cooperation in preparing a Japanese draft version at an earlier stage of this work. We would also like to thank Kazumasa Shinagawa for his idea improving a protocol for the 3-coloring problem. The second author is grateful to Haruka Mizuta for helpful discussions at the beginning of this work. This work was supported in part by JSPS KAKENHI Grant Numbers JP19J21153 and JP21K11881.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Miyahara, D., Haneda, H., Mizuki, T. (2021). Card-Based Zero-Knowledge Proof Protocols for Graph Problems and Their Computational Model. In: Huang, Q., Yu, Y. (eds) Provable and Practical Security. ProvSec 2021. Lecture Notes in Computer Science(), vol 13059. Springer, Cham. https://doi.org/10.1007/978-3-030-90402-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-90402-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90401-2
Online ISBN: 978-3-030-90402-9
eBook Packages: Computer ScienceComputer Science (R0)