Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Card-Based Zero-Knowledge Proof Protocols for Graph Problems and Their Computational Model

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2021)

Abstract

Zero-Knowledge Proof (ZKP) is a cryptographic technique that enables a prover to convince a verifier that a given statement is true without revealing any information other than its truth. It is known that ZKP can be realized by physical objects such as a deck of cards; recently, many such “card-based” ZKP protocols for pencil puzzles (such as Sudoku and Numberlink) have been devised. In this paper, we shift our attention to graph theory problems from pencil puzzles: We propose card-based ZKP protocols for the graph 3-coloring problem and the graph isomorphism problem. Similar to most of the existing card-based ZKP protocols, our two protocols have no soundness error. The proposed protocols can be implemented without any technical knowledge, and the principle of zero-knowledge proof is easy to understand. In particular, our protocol for the graph isomorphism problem requires only three shuffles regardless of the sizes of a pair of given graphs. In addition, to deal with our proposed protocols more rigorously, we present a formal framework for card-based ZKP protocols which are non-interactive and have no soundness error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An encoding rule representing a positive integer in this manner was first considered by Shinagawa et al. in 2015 [31].

  2. 2.

    One might think that the resulting order could be easily known because there are only six possibilities. One possible implementation is to put piles of cards into a box or ball whose inside is invisible from outside and then throw it up to randomize the order of them (cf. [32]).

  3. 3.

    All other sequences in U start with illegal witness subsequences.

  4. 4.

    Very recently, Ruangwises and Itoh [25, 28] implied that a card-based ZKP protocol for the Hamiltonian cycle problem can be constructed in a similar way to our protocol for the graph isomorphism problem.

References

  1. Babai, L.: Graph isomorphism in quasipolynomial time. In: ACM Symposium on Theory of Computing, STOC 2016, ACM, New York, pp. 684–697 (2016). https://doi.org/10.1145/2897518.2897542

  2. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) Fun with Algorithms, Schloss Dagstuhl, Dagstuhl, LIPIcs, vol. 49, pp. 8:1–8:20 (2016). https://doi.org/10.4230/LIPIcs.FUN.2016.8

  3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  6. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1

  7. Godsil, C., Royle, G.F.: Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

  8. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 690–728 (1991). https://doi.org/10.1145/116825.116852

  9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012

  10. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

  11. Grohe, M., Schweitzer, P.: The graph isomorphism problem. Commun. ACM 63(11), 128–134 (2020). https://doi.org/10.1145/3372123

  12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  14. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2019). https://doi.org/10.5445/IR/1000097756

  15. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/s00354-020-00120-0

  16. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop” condition. Theoret. Comput. Sci. (2021). https://doi.org/10.1016/j.tcs.2021.07.019, in press

  17. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms, Schloss Dagstuhl, Dagstuhl, LIPIcs, vol. 157, pp. 20:1–20:21 (2020). https://doi.org/10.4230/LIPIcs.FUN.2021.20

  18. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/s10207-013-0219-4

    Article  Google Scholar 

  19. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  20. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theoret. Comput. Sci. 191(1–2), 173–183 (1998). https://doi.org/10.1016/S0304-3975(97)00107-2

  21. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Gener. Comput. 39(1), 19–40 (2021). https://doi.org/10.1007/s00354-020-00113-z

  22. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19

    Chapter  Google Scholar 

  23. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: applications to Nurikabe and Hitori. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds.) CiE 2021. LNCS, vol. 12813, pp. 373–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80049-9_37

    Chapter  Google Scholar 

  24. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. In: Computing and Combinatorics. LNCS, Springer, Cham (2021, to appear)

    Google Scholar 

  25. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for connected spanning subgraph problem and Bridges puzzle (2020). https://arxiv.org/abs/2011.02313

  26. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021). https://doi.org/10.1007/s00354-020-00114-y

  27. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_24

    Chapter  Google Scholar 

  28. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to Bridges puzzle and other problems. In: Unconventional Computation and Natural Computation. LNCS, Springer, Cham (2021, to appear)

    Google Scholar 

  29. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theoret. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.1016/j.tcs.2020.05.036

  30. Shinagawa, K.: On the construction of easy to perform card-based protocols. Ph.D. thesis, Tokyo Institute of Technology (2020)

    Google Scholar 

  31. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using regular polygon cards. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 127–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_7

    Chapter  Google Scholar 

  32. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2019). https://doi.org/10.1007/s10207-019-00463-w

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees, whose comments have helped us improve the presentation of the paper. We would like to thank Hideaki Sone for his cooperation in preparing a Japanese draft version at an earlier stage of this work. We would also like to thank Kazumasa Shinagawa for his idea improving a protocol for the 3-coloring problem. The second author is grateful to Haruka Mizuta for helpful discussions at the beginning of this work. This work was supported in part by JSPS KAKENHI Grant Numbers JP19J21153 and JP21K11881.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daiki Miyahara or Takaaki Mizuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyahara, D., Haneda, H., Mizuki, T. (2021). Card-Based Zero-Knowledge Proof Protocols for Graph Problems and Their Computational Model. In: Huang, Q., Yu, Y. (eds) Provable and Practical Security. ProvSec 2021. Lecture Notes in Computer Science(), vol 13059. Springer, Cham. https://doi.org/10.1007/978-3-030-90402-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90402-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90401-2

  • Online ISBN: 978-3-030-90402-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics