Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Simple Clustering Algorithm Based on Weighted Expected Distances

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2021)

Abstract

This paper contains a proposal to assign points to clusters, represented by their centers, based on weighted expected distances in a cluster analysis context. The proposed clustering algorithm has mechanisms to create new clusters, to merge two nearby clusters and remove very small clusters, and to identify points ‘noise’ when they are beyond a reasonable neighborhood of a center or belong to a cluster with very few points. The presented clustering algorithm is evaluated using four randomly generated and two well-known data sets. The obtained clustering is compared to other clustering algorithms through the visualization of the clustering, the value of the DB validity measure and the value of the sum of within-cluster distances. The preliminary comparison of results shows that the proposed clustering algorithm is very efficient and effective.

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Unit Project Scope UIDB/00319/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    available at Mostapha Kalami Heris, Evolutionary Data Clustering in MATLAB (URL: https://yarpiz.com/64/ypml101-evolutionary-clustering), Yarpiz, 2015.

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Greenlaw, R., Kantabutra, S.: Survey of clustering: algorithms and applications. Int. J. Inf. Retr. Res. 3(2) (2013). 29 pages

    Google Scholar 

  3. Ezugwu, A.E.: Nature-inspired metaheuristics techniques for automatic clustering: a survey and performance study. SN Appl. Sci. 2, 273–329 (2020)

    Article  Google Scholar 

  4. Mohammed, J.Z., Meira, W., Jr.: Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2nd edn. Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  5. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  6. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  8. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

    Article  MathSciNet  Google Scholar 

  9. Kwedlo, W.: A clustering method combining differential evolution with K-means algorithm. Pattern Recogn. Lett. 32, 1613–1621 (2011)

    Article  Google Scholar 

  10. Patel, K.G.K., Dabhi, V.K., Prajapati, H.B.: Clustering using a combination of particle swarm optimization and K-means. J. Intell. Syst. 26(3), 457–469 (2017)

    Article  Google Scholar 

  11. He, Z., Yu, C.: Clustering stability-based evolutionary K-means. Soft. Comput. 23, 305–321 (2019)

    Article  Google Scholar 

  12. Sarkar, M., Yegnanarayana, B., Khemani, D.: A clustering algorithm using evolutionary programming-based approach. Pattern Recogn. Lett. 18, 975–986 (1997)

    Article  Google Scholar 

  13. Chou, C.-H., Su, M.-C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7, 205–220 (2004)

    Article  MathSciNet  Google Scholar 

  14. Asvadi, A.: K-means Clustering Code. Department of ECE, SPR Lab., Babol (Noshirvani) University of Technology (2013). http://www.a-asvadi.ir/

  15. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

    Google Scholar 

  16. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). http://archive.ics.uci.edu/ml

  17. Cura, T.: A particle swarm optimization approach to clustering. Expert Syst. Appl. 39, 1582–1588 (2012)

    Article  Google Scholar 

  18. Kao, Y.-T., Zahara, E., Kao, I.-W.: A hybridized approach to data clustering. Expert Syst. Appl. 34, 1754–1762 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank three anonymous referees for their comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria A. C. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, A.M.A.C., Costa, M.F.P., Fernandes, E.M.G.P. (2021). A Simple Clustering Algorithm Based on Weighted Expected Distances. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics