Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Revisiting Homomorphic Encryption Schemes for Finite Fields

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Abstract

The Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/ Fan-Vercauteren (BFV) schemes are the two main homomorphic encryption (HE) schemes to perform exact computations over finite fields and integers. Although the schemes work with the same plaintext space, there are significant differences in their noise management, algorithms for the core homomorphic multiplication operation, message encoding, and practical usability. The main goal of our work is to revisit both schemes, focusing on closing the gap between the schemes by improving their noise growth, computational complexity of the core algorithms, and usability. The other goal of our work is to provide both theoretical and experimental performance comparison of BGV and BFV.

More precisely, we propose an improved variant of BFV where the encryption operation is modified to significantly reduce the noise growth, which makes the BFV noise growth somewhat better than for BGV (in contrast to prior results showing that BGV has smaller noise growth for larger plaintext moduli). We also modify the homomorphic multiplication procedure, which is the main bottleneck in BFV, to reduce its algorithmic complexity. Our work introduces several other novel optimizations, including lazy scaling in BFV homomorphic multiplication and an improved BFV decryption procedure in the Residue Number System (RNS) representation. We also develop a usable variant of BGV as a more efficient alternative to BFV for common practical scenarios.

We implement our improved variants of BFV and BGV in PALISADE and evaluate their experimental performance for several benchmark computations. The experimental results suggest that our BGV implementation is faster for intermediate and large plaintext moduli, which are often used in practical scenarios with ciphertext packing, while our BFV implementation is faster for small plaintext moduli.

The full version of the paper is available at https://eprint.iacr.org/2021/204.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More general cyclotomic rings are also supported, and all results of our work equally apply to these non-power-of-two rings; please see [23] for more details on general cyclotomic rings.

References

  1. Lattigo v2.1.1, December 2020. http://github.com/ldsec/lattigo. ePFL-LDS

  2. PALISADE Lattice Cryptography Library (release 1.10.6), December 2020. https://palisade-crypto.org/

  3. Al Badawi, A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Implementation and performance evaluation of RNS variants of the BFV homomorphic encryption scheme. IEEE Trans. Emerg. Top. Comput. 9(2), 941–956 (2021). https://doi.org/10.1109/TETC.2019.2902799

    Article  Google Scholar 

  4. Albrecht, M., Chase, M., Chen, H., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018

    Google Scholar 

  5. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_23

    Chapter  Google Scholar 

  6. Bajard, J.C., Eynard, J., Martins, P., Sousa, L., Zucca, V.: Note on the noise growth of the RNS variants of the BFV scheme. Cryptology ePrint Archive, Report 2019/1266 (2019). https://eprint.iacr.org/2019/1266

  7. Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

  8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  11. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  13. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_19

    Chapter  Google Scholar 

  14. Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic worst-case noise analysis in FHE. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 546–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_27

    Chapter  Google Scholar 

  15. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012)

    Google Scholar 

  17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  18. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9

    Chapter  Google Scholar 

  19. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28

    Chapter  Google Scholar 

  20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  21. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5

    Chapter  Google Scholar 

  22. Halevi, S., Shoup, V.: Bootstrapping for HElib. Cryptology ePrint Archive, Report 2014/873 (2014). https://eprint.iacr.org/2014/873

  23. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481 (2020)

    Google Scholar 

  24. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_16

    Chapter  Google Scholar 

  25. Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption with reduced approximation error. Cryptology ePrint Archive, Report 2020/1118 (2020). https://eprint.iacr.org/2020/1118

  26. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for GWAS on encrypted data. BMC Med. Genomics 13(7), 1–13 (2020)

    Google Scholar 

  27. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  28. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. Cryptology ePrint Archive, Report 2020/086 (2020). https://eprint.iacr.org/2020/086

  29. Microsoft SEAL (2020). https://github.com/Microsoft/SEAL

  30. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2012). https://doi.org/10.1007/s10623-012-9720-4

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Andrey Kim and Yuriy Polyakov’s NJIT work was supported in part by the Defense Advanced Research Projects Agency (DARPA) and the US Navy SPAWAR Systems Center Pacific (SSCPAC) under Contract Number N66001-17-1-4043 and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-1902070006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Department of Defense, ODNI, IARPA, or the U.S. Government. Vincent Zucca’s KU Leuven work was supported in part by the Research Council KU Leuven grant C14/18/067, CyberSecurity Research Flanders with reference number VR20192203, and the IARPA HECTOR project under the solicitation number IARPA-BAA-17-05. We also thank Charlotte Bonte for a careful review of the first version of the paper, her feedback, and fruitful discussions that helped us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Polyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, A., Polyakov, Y., Zucca, V. (2021). Revisiting Homomorphic Encryption Schemes for Finite Fields. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13092. Springer, Cham. https://doi.org/10.1007/978-3-030-92078-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92078-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92077-7

  • Online ISBN: 978-3-030-92078-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics