Abstract
The Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/ Fan-Vercauteren (BFV) schemes are the two main homomorphic encryption (HE) schemes to perform exact computations over finite fields and integers. Although the schemes work with the same plaintext space, there are significant differences in their noise management, algorithms for the core homomorphic multiplication operation, message encoding, and practical usability. The main goal of our work is to revisit both schemes, focusing on closing the gap between the schemes by improving their noise growth, computational complexity of the core algorithms, and usability. The other goal of our work is to provide both theoretical and experimental performance comparison of BGV and BFV.
More precisely, we propose an improved variant of BFV where the encryption operation is modified to significantly reduce the noise growth, which makes the BFV noise growth somewhat better than for BGV (in contrast to prior results showing that BGV has smaller noise growth for larger plaintext moduli). We also modify the homomorphic multiplication procedure, which is the main bottleneck in BFV, to reduce its algorithmic complexity. Our work introduces several other novel optimizations, including lazy scaling in BFV homomorphic multiplication and an improved BFV decryption procedure in the Residue Number System (RNS) representation. We also develop a usable variant of BGV as a more efficient alternative to BFV for common practical scenarios.
We implement our improved variants of BFV and BGV in PALISADE and evaluate their experimental performance for several benchmark computations. The experimental results suggest that our BGV implementation is faster for intermediate and large plaintext moduli, which are often used in practical scenarios with ciphertext packing, while our BFV implementation is faster for small plaintext moduli.
The full version of the paper is available at https://eprint.iacr.org/2021/204.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More general cyclotomic rings are also supported, and all results of our work equally apply to these non-power-of-two rings; please see [23] for more details on general cyclotomic rings.
References
Lattigo v2.1.1, December 2020. http://github.com/ldsec/lattigo. ePFL-LDS
PALISADE Lattice Cryptography Library (release 1.10.6), December 2020. https://palisade-crypto.org/
Al Badawi, A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Implementation and performance evaluation of RNS variants of the BFV homomorphic encryption scheme. IEEE Trans. Emerg. Top. Comput. 9(2), 941–956 (2021). https://doi.org/10.1109/TETC.2019.2902799
Albrecht, M., Chase, M., Chen, H., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018
Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_23
Bajard, J.C., Eynard, J., Martins, P., Sousa, L., Zucca, V.: Note on the noise growth of the RNS variants of the BFV scheme. Cryptology ePrint Archive, Report 2019/1266 (2019). https://eprint.iacr.org/2019/1266
Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36 (2014)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_19
Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic worst-case noise analysis in FHE. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 546–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_27
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)
Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5
Halevi, S., Shoup, V.: Bootstrapping for HElib. Cryptology ePrint Archive, Report 2014/873 (2014). https://eprint.iacr.org/2014/873
Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481 (2020)
Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_16
Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption with reduced approximation error. Cryptology ePrint Archive, Report 2020/1118 (2020). https://eprint.iacr.org/2020/1118
Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for GWAS on encrypted data. BMC Med. Genomics 13(7), 1–13 (2020)
Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20
Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. Cryptology ePrint Archive, Report 2020/086 (2020). https://eprint.iacr.org/2020/086
Microsoft SEAL (2020). https://github.com/Microsoft/SEAL
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2012). https://doi.org/10.1007/s10623-012-9720-4
Acknowledgments
Andrey Kim and Yuriy Polyakov’s NJIT work was supported in part by the Defense Advanced Research Projects Agency (DARPA) and the US Navy SPAWAR Systems Center Pacific (SSCPAC) under Contract Number N66001-17-1-4043 and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-1902070006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Department of Defense, ODNI, IARPA, or the U.S. Government. Vincent Zucca’s KU Leuven work was supported in part by the Research Council KU Leuven grant C14/18/067, CyberSecurity Research Flanders with reference number VR20192203, and the IARPA HECTOR project under the solicitation number IARPA-BAA-17-05. We also thank Charlotte Bonte for a careful review of the first version of the paper, her feedback, and fruitful discussions that helped us to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Kim, A., Polyakov, Y., Zucca, V. (2021). Revisiting Homomorphic Encryption Schemes for Finite Fields. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13092. Springer, Cham. https://doi.org/10.1007/978-3-030-92078-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-92078-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92077-7
Online ISBN: 978-3-030-92078-4
eBook Packages: Computer ScienceComputer Science (R0)