Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Plan-Based Formal Model of Character Regret

  • Conference paper
  • First Online:
Interactive Storytelling (ICIDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13138))

Included in the following conference series:

  • 2758 Accesses

Abstract

Regret is an important emotion in narrative. It is often built into backstories, influences character arcs, and motivates action. Regret is also an important emotion for interactive stories. While linear narratives allow audiences to empathize with and understand characters through their feelings of regret, an interactive context allows participants to feel regret about their own actions and influence on events. A formal model of regret will allow automated interactive storytellers to identify and generate situations where characters, including the participant, feel regret about an action or outcome. To this end, we introduce a formal narrative planning-based model of regret based on character goals and choice. Using our model, we show how character regret is identified in the context of an example dilemma. Finally, we enumerate and discuss types of regret the model has not yet formalized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, B.-C., Young, R.M.: A use of flashback and foreshadowing for surprise arousal in narrative using a plan-based approach. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS, vol. 5334, pp. 156–167. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89454-4_22

    Chapter  Google Scholar 

  2. Bahamón, J.C., Barot, C., Young, R.M.: A goal-based model of personality for planning-based narrative generation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  3. Barot, C., et al.: Bardic: generating multimedia narrative reports for game logs. In: Proceedings of the 10th Workshop on Intelligent Narrative Technologies at the 13th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2017)

    Google Scholar 

  4. Cardona-Rivera, R.E., Robertson, J., Ware, S.G., Harrison, B., Roberts, D.L., Young, R.M.: Foreseeing meaningful choices. In: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 10, pp. 9–15 (2014)

    Google Scholar 

  5. Chazelle, D.: La La Land (2016)

    Google Scholar 

  6. Christensen, M., Nelson, J., Cardona-Rivera, R.: Using domain compilation to add belief to narrative planners. In: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 38–44 (2020)

    Google Scholar 

  7. Columbus, C.: Home alone (1990)

    Google Scholar 

  8. Fendt, M.W., Harrison, B., Ware, S.G., Cardona-Rivera, R.E., Roberts, D.L.: Achieving the illusion of agency. In: Oyarzun, D., Peinado, F., Young, R.M., Elizalde, A., Méndez, G. (eds.) ICIDS 2012. LNCS, vol. 7648, pp. 114–125. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34851-8_11

    Chapter  Google Scholar 

  9. Fendt, M.W., Young, R.M.: Leveraging intention revision in narrative planning to create suspenseful stories. IEEE Trans. Comput. Intell. AI Games 9(4), 381–392 (2016)

    Article  Google Scholar 

  10. Gilovich, T., Medvec, V.H.: The experience of regret: what, when, and why. Psychol. Rev. 102(2), 379 (1995)

    Article  Google Scholar 

  11. Gilovich, T., Medvec, V.H., Kahneman, D.: Varieties of regret: a debate and partial resolution. Psychol. Rev. 105(3), 602 (1998)

    Article  Google Scholar 

  12. Haslum, P.: Narrative panning: compilations to classical planning. J. Artif. Intell. Res. 44, 383–395 (2012)

    Article  MathSciNet  Google Scholar 

  13. Jhala, A., Young, R.M.: Cinematic cisual discourse: representation, generation, and evaluation. IEEE Trans. Comput. Intell. AI Games 2(2), 69–81 (2010)

    Article  Google Scholar 

  14. Kokkinakis, A.V., et al.: DAX: data-driven audience experiences in esports. In: ACM International Conference on Interactive Media Experiences, IMX 2020, pp. 94–105. Association for Computing Machinery, New York (2020)

    Google Scholar 

  15. Lucas, G.: Star Wars: Episode IV - A New Hope (1977)

    Google Scholar 

  16. Mawhorter, P., Mateas, M., Wardrip-Fruin, N.: Generating relaxed, obvious, and dilemma choices with Dunyazad. In: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 58–64 (2015)

    Google Scholar 

  17. Mawhorter, P., Mateas, M., Wardrip-Fruin, N., Jhala, A.: Towards a theory of choice poetics. In: International Conference on the Foundations of Digital Games. ACM (2014)

    Google Scholar 

  18. Mawhorter, P., Zegura, C., Gray, A., Jhala, A., Mateas, M., Wardrip-Fruin, N.: Choice poetics by example. In: Arts, vol. 7, p. 47. Multidisciplinary Digital Publishing Institute (2018)

    Google Scholar 

  19. McDermott, D., et al.: PDDL - the planning domain definition language. Technical report CVC TR98003/DCSTR1165, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  20. Miller, C., Dighe, M., Martens, C., Jhala, A.: Crafting interactive narrative games with adversarial planning agents from simulations. In: Bosser, A.-G., Millard, D.E., Hargood, C. (eds.) ICIDS 2020. LNCS, vol. 12497, pp. 44–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62516-0_4

    Chapter  Google Scholar 

  21. Ramirez, A., Bulitko, V.: Automated planning and player modeling for interactive storytelling. IEEE Trans. Comput. Intell. AI Games 7(4), 375–386 (2014)

    Article  Google Scholar 

  22. Riedl, M.O., Young, R.M.: Narrative planning: balancing plot and character. J. Artif. Intell. Res. 39, 217–268 (2010)

    Article  Google Scholar 

  23. Riedl, M.O., Bulitko, V.: Interactive narrative: an intelligent systems approach. AI Mag. 34(1), 67 (2013)

    Google Scholar 

  24. Robertson, J., Cardona-Rivera, R.E., Young, R.M.: Invisible dynamic mechanic adjustment in virtual reality games. In: IEEE International Conference on Artificial Intelligence and Virtual Reality, pp. 282–289. IEEE (2020)

    Google Scholar 

  25. Robertson, J., Jhala, A., Young, R.M.: Efficient choice enumeration for narrative world design. In: International Conference on the Foundations of Digital Games, pp. 1–10 (2019)

    Google Scholar 

  26. Robertson, J., et al.: Wait, but why?: assessing behavior explanation strategies for real-time strategy games. In: 26th International Conference on Intelligent User Interfaces, IUI 2021, pp. 32–42. Association for Computing Machinery, New York (2021)

    Google Scholar 

  27. Robertson, J., Young, R.M.: Finding Schrödinger’s gun. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 153–159 (2014)

    Google Scholar 

  28. Robertson, J., Young, R.M.: Gameplay as on-line mediation search. In: Proceedings of the AAAI Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 42–48 (2014)

    Google Scholar 

  29. Robertson, J., Young, R.M.: Automated gameplay generation from declarative world representations. In: Proceedings of the AAAI Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 72–78 (2015)

    Google Scholar 

  30. Robertson, J., Young, R.M.: Interactive narrative intervention alibis through domain revision. In: Intelligent Narrative Technologies Workshop at the AAAI Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 49–52 (2015)

    Google Scholar 

  31. Robertson, J., Young, R.M.: Perceptual experience management. IEEE Trans. Games 11(1), 15–24 (2019)

    Article  Google Scholar 

  32. Roese, N.J., Morrison, M.: The psychology of counterfactual thinking. Hist. Soc. Res./Historische Sozialforschung 16–26 (2009)

    Google Scholar 

  33. Teutenberg, J., Porteous, J.: Efficient intent-based narrative generation using multiple planning agents. In: International Conference on Autonomous Agents and Multi-Agent Systems, pp. 603–610 (2013)

    Google Scholar 

  34. Ware, S., Young, R.M.: CPOCL: a narrative planner supporting conflict. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2011)

    Google Scholar 

  35. Ware, S.G., Garcia, E.T., Shirvani, A., Farrell, R.: Multi-agent narrative experience management as story graph pruning. In: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 15, pp. 87–93 (2019)

    Google Scholar 

  36. Ware, S.G., Young, R.M.: Glaive: a state-space narrative planner supporting intentionality and conflict. In: Proceedings of the 10th AAAI international conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 80–86 (2014). (Awarded Best Student Paper)

    Google Scholar 

  37. Ware, S.G., Young, R.M.: Intentionality and conflict in the best laid plans interactive narrative virtual environment. IEEE Trans. Comput. Intell. AI Games 8(4), 402–411 (2015)

    Article  Google Scholar 

  38. Young, R.M.: Notes on the use of plan structures in the creation of interactive plot. In: AAAI Fall Symposium on Narrative Intelligence, pp. 164–167 (1999)

    Google Scholar 

  39. Young, R.M., Ware, S.G., Cassell, B.A., Robertson, J.: Plans and planning in narrative generation: a review of plan-based approaches to the generation of story, discourse and interactivity in narratives. Sprache Datenverarbeitung Spec. Issue Formal Comput. Models Narrative 37(1–2), 41–64 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justus Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinelli, M., Robertson, J. (2021). A Plan-Based Formal Model of Character Regret. In: Mitchell, A., Vosmeer, M. (eds) Interactive Storytelling. ICIDS 2021. Lecture Notes in Computer Science(), vol 13138. Springer, Cham. https://doi.org/10.1007/978-3-030-92300-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92300-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92299-3

  • Online ISBN: 978-3-030-92300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics