Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Ontological Approach to Detecting Irrelevant and Unreliable Information on Web-Resources and Social Networks

  • Conference paper
  • First Online:
Future Intent-Based Networking

Abstract

This paper considers an important scientific and applied task of identifying irrelevant and unreliable information on web resources, which is an important area of development and implementation of methods of data mining. The analysis of modern methods and means of estimation of irrelevant and unreliable information from the point of view of estimation of information sources is carried out and the basic problem directions which arise in the course of their functioning are allocated.

A system of indicators for filtering unreliable and irrelevant information, which is obtained on the basis of several sources, is proposed. Based on this system, a method of checking information from web resources for relevance and reliability has been implemented. This approach is based on the possibility of using a predefined resource, the data from which are only reliable.

A method of detecting inaccurate and irrelevant information has been developed, taking into account the peculiarities of its distribution through relevant pages in social networks and the use of multitasking classification of information obtained from various data sources.

The proposed intelligent data processing methods together with other methods of intellectual analysis used to evaluate information obtained from the Internet, will significantly increase the efficiency of the process of establishing irrelevance and inaccuracy of information, and will build an assessment of a particular web resource for publishing and disseminating such information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vo, N., Lee, K.: The Rise of Guardians: Fact-checking URL Recommendation to Combat Fake News. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR '18), pp. 275–284. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209978.3210037

  2. Ye, J., Skiena, S.: MediaRank: Computational Ranking of Online News Sources, pp. 2469–2477 (2019). https://doi.org/10.1145/3292500.3330709.

  3. Yu, B., Zhang, Z., Liu, T., Wang, B., Li, S., Li, Q.: Beyond word attention: using segment attention in neural relation extraction. IJCAI (2019)

    Google Scholar 

  4. Wang, C.: Relation extraction. In: Proceedings of the Twenty-Eighth International Joint Conference on Artifcial Intelligence. International Joint Conferences on Artifcial Intelligence Organization, pp. 5401–5407. https://doi.org/10.24963/ijcai.2019/750

  5. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. 53(5), 1–40, Article 109 (2020). https://doi.org/10.1145/3395046

  6. Ray, O., Qian, J., Wang, W.Y.: A survey on natural language processing for fake news detection (2020). ArXiv abs/1811.00770

    Google Scholar 

  7. Dyvak, M., Papa, O., Melnyk, A., Pukas, A., Porplytsya, N., Rot, A.: Interval model of the efficiency of the functioning of information web resources for services on ecological expertise. Mathematics 8(12), 2116 (2020). https://doi.org/10.3390/math8122116

    Article  Google Scholar 

  8. Nørregaard, J., Horne, B.D., Adalı, S.: NELA-GT-2018: a large multi-labelled news dataset for the study of misinformation in news articles. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 13, pp. 630–638 (2018)

    Google Scholar 

  9. Trivedi, R., Sisman, B., Dong, X., Faloutsos, C., Ma, J., Zha, H.: LinkNBed: multi-graph representation learning with entity linkage, pp. 252–262 (2018). https://doi.org/10.18653/v1/P18-1024

  10. Vilone, G., Longo, L.: Explainable artificial intelligence: a systematic review (2020)

    Google Scholar 

  11. Kovbasistyi, A., Melnyk, A., Dyvak, M., Brych, V., Spivak, I.: Method for detection of non-relevant and wrong information based on content analysis of web resources. In: 2017 XIIIth International Conference on Per-spective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, 2017, pp. 154–156. https://doi.org/10.1109/MEMSTECH.2017.7937555

  12. Dyvak, M.P., Kovbasistyi, A.V., Melnyk, A.M., Turchyn, L.Y., Martsenyuk Y.O.: System for web resources content structuring and recognizing with the machine learning elements. Radio Electron. Comput. Sci. Control (3) (2018). https://doi.org/10.15588/1607-3274-2018-3-14

  13. Dyvak, A., Melnyk, A., Shevchuk, R., Kovbasistyi, A., Huhul, O., Tymchyshyn, V.: Mathematical modeling of the estimation process of functioning efficiency level of information web-resources. In: Proceedings of the 2020 10th International Conference “Advanced Computer Information Technologies” – Deggendorf, Germany, 16–18 September 2020, pp. 492–496 (2020)

    Google Scholar 

  14. Bian, T., et al.: Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks (2020). arXiv preprint arXiv:2001.06362

  15. Sample, C., McAlaney, J., Bakdash, J.Z., Thackray, H.: A cultural exploration of social media manipulators. In: Proceedings of the 17th European Conference on Cyber Warfare and Security, Oslo, Norway, pp. 342–341 (2018)

    Google Scholar 

  16. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating fake news: a survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol. 10, 1–42 (2019)

    Article  Google Scholar 

  17. Hashimoto, T., Shepard, D.L., Kuboyama, T., Shin, K., Kobayashi, R., Uno, T.: Analyzing temporal patterns of topic diversity using graph clustering. J. Supercomput. 77(5), 4375–4388 (2020). https://doi.org/10.1007/s11227-020-03433-5

    Article  Google Scholar 

  18. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 797–806 (2017)

    Google Scholar 

  19. Dutta, H.S., Dutta, V.R., Adhikary, A., Chakraborty, T.: HawkesEye: detecting fake retweeters using Hawkes process and topic modeling. IEEE Trans. Inf. Forensics Secur. 15, 2667–2678 (2020)

    Article  Google Scholar 

  20. Gontier, C., Pfister, J.P.: Identifiability of a binomial synapse. Front. Comput. Neurosci. 14, 86 (2020). https://doi.org/10.3389/fncom.2020.558477. PMID: 33117139

    Article  Google Scholar 

  21. Gao, S., Ma, J., Chen, Z.: Modeling and predicting retweeting dynamics on microblogging platforms. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, pp. 107–116 (2015)

    Google Scholar 

  22. Lukasik, M., Srijith, P.K., Vu, D., Bontcheva, K., Zubiaga, A., Cohn, T.: Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, pp. 393–398 (2016)

    Google Scholar 

  23. Shevchuk, R., Melnyk, A., Opalko, O., Shevchuk, H.: Software for automatic estimating security settings of social media accounts. In: 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), pp. 769–773 (2020). https://doi.org/10.1109/ACIT49673.2020.9208879

  24. Ganji, M.D.; Rahmanzadeh, A.: Chapter 6—Mathematical modeling and simulation. In: Nguyen-Tri, P., Do, T.-O., Nguyen, T.A. (eds.) Smart Nanocontainers. Micro and Nano Technologies, pp. 89–102. Elsevier, Amsterdam (2020). ISBN 978-0-12-816770-0

    Google Scholar 

  25. Brainard, J., Hunter, P., Hall, I.: An agent-based model about the effects of fake news on a norovirus outbreak. Rev. D’épidémiologie Santé Publique 68, 99–107 (2020)

    Article  Google Scholar 

  26. Wahid-Ul-Ashraf, A., Budka, M., Musial, K.: Simulation and Augmentation of Social Networks for Building Deep Learning Models (2019). arXiv arXiv:1905.09087

  27. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. 53, 1–40 (2020)

    Article  Google Scholar 

  28. Shrivastava, G., Kumar, P., Ojha, R.P., Srivastava, P.K., Mohan, S., Srivastava, G.: Defensive modeling of fake news through online social networks. IEEE Trans. Comput. Social Syst. 7, 1159–1167 (2020)

    Article  Google Scholar 

  29. Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: The online human-bot interactions: detection, estimation, and characterization. In: Proceedings of the International AAAI Conference on Web and Social Media, Palo Alto, CA, USA, 25–28 June 2018 (2018)

    Google Scholar 

  30. Yang, K., Varol, O., Davis, C.A., Ferrara, E., Flammini, A., Menczer, F.: Arming the public with artificial intelligence to counter social bots. Hum. Behav. Emerg. Technol. 1, 4861 (2019)

    Article  Google Scholar 

  31. Saura, J.R., Ribeiro-Soriano, D., Palacios-Marqués, D.: From user-generated data to data-driven innovation: a research agenda to understand user privacy in digital markets. Int. J. Inf. Manag. 102331 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Dyvak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dyvak, M., Melnyk, A., Mazepa, S., Stetsko, M. (2022). An Ontological Approach to Detecting Irrelevant and Unreliable Information on Web-Resources and Social Networks. In: Klymash, M., Beshley, M., Luntovskyy, A. (eds) Future Intent-Based Networking. Lecture Notes in Electrical Engineering, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-030-92435-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92435-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92433-1

  • Online ISBN: 978-3-030-92435-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics