Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LLFSMs on the PRU: Executable and Verifiable Software Models on a Real-Time Microcontroller

  • Conference paper
  • First Online:
Advances in Systems Engineering (ICSEng 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 364))

Included in the following conference series:

Abstract

The Internet of Things (IoT) has hugely expanded. There are more devices than people and device numbers are still growing exponentially. These IoT devices are becoming more important and integrated into our lives, and their sophisticated behaviour has prompted the term “Internet of Behaviours”. Model-Driven Software Engineering (MDSE) and especially formal verification are applied to safety-critical systems, such as automotive and aerospace, to ensure behaviour correctness, but their use is not common place in the deployment of IoT devices. This paper introduces the deployment of executable and verifiable models for boards with hybrid CPUs; such as Asymmetrical Multi Processing (ASM), including the programmable real-time units (PRUs) in the TI BeagleBone series boards. To the best of our knowledge, this is the first time Model-Driven Software Engineering has been used for applications in PRUs. Thus, we lift the level of abstraction from the use of assembly and C to even beyond C++, using logic-labelled state-machines (LLFSMs). We benchmark MDSE with an existing PRU real-time application [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are thankful to Miguel Carrillo for ensuring LTL-formulas match the verified property.

References

  1. Grubb, F., Estivill-Castro, V.: LLFSMs on the PRU real-time microcontroller (2021). https://github.com/fgrubb/LLFSMs-on-the-PRU-Real-Time-Microcontroller

  2. Molloy, D.: Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux. Wiley, New York (2014)

    Book  Google Scholar 

  3. Kushal, K.S., Nanda, M., Jayanthi, J.: Formal methods and tools for safety of critical systems. In: Nanda, M., Jeppu, Y. (eds.) Formal Methods for Safety and Security, pp. 13–21. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4121-1_2

    Chapter  Google Scholar 

  4. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-aware scheduling for real-time systems: a survey. ACM Trans. Embed. Comput. Syst. 15(1), 1–34 (2016). https://doi.org/10.1145/2808231

    Article  Google Scholar 

  5. Gomaa, H.: Real-Time Software Design for Embedded Systems. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781139644532

    Book  Google Scholar 

  6. Rizwan, P., Suresh, K., Babu, M.R.: Real-time smart traffic management system for smart cities by using internet of things and big data. In: International Conference on Emerging Technological Trends (ICETT), pp. 1–7 (2016). https://doi.org/10.1109/ICETT.2016.7873660

  7. Malek, Y.N., et al.: On the use of IoT and big data technologies for real-time monitoring and data processing. Procedia Comput. Sci. 113, 429–434 (2017). https://doi.org/10.1016/j.procs.2017.08.281

    Article  Google Scholar 

  8. Texas Instruments: PRU optimizing C/C++ compiler v2.3. Literature Number: SPRUHV7C (2018)

    Google Scholar 

  9. Rodrigues da Silva, A.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015). https://doi.org/10.1016/j.cl.2015.06.001

    Article  Google Scholar 

  10. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Morgan & Claypool, San Rafael (2017)

    Google Scholar 

  11. Mohamed, M.A., Kardas, G., Challenger, M.: Model-driven engineering tools and languages for cyber-physical systems-a systematic literature review. IEEE Access 9, 48605–48630 (2021). https://doi.org/10.1109/ACCESS.2021.3068358

    Article  Google Scholar 

  12. Estivill-Castro, V., Hexel, R., Lusty, C.: High performance relaying of C++11, objects across processes and logic-labeled finite-state machines. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 182–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7_16

    Chapter  Google Scholar 

  13. Estivill-Castro, V., Hexel, R., McColl, M.: High-level executable models of reactive real-time systems with logic-labelled finite-state machines and FPGAs. In: International Conference on ReConFigurable Computing and FPGAs, ReConFig, pp. 1–8. IEEE (2018)

    Google Scholar 

  14. Carrillo, M., Estivill-Castro, V., Rosenblueth, D.A.: Verification and simulation of time-domain properties for models of behaviour. In: Hammoudi, S., Pires, L.F., Selić, B. (eds.) MODELSWARD 2020. CCIS, vol. 1361, pp. 225–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67445-8_10

    Chapter  Google Scholar 

  15. McPherson, A.P., Zappi, V.: An environment for submillisecond-latency audio and sensor processing on BeagleBone Black. J. Audio Eng. Soc. (2015)

    Google Scholar 

  16. Anand, A.M., Raveendran, B., Cherukat, S., Shahab, S.: Using PRUSS for real-time applications on Beaglebone Black. In: Third International Symposium on Women in Computing and Informatics, NY, USA, WCI 2015, pp. 377–382. ACM (2015)

    Google Scholar 

  17. Kepa, K., Abaid, N.: Development of a frequency-modulated ultrasonic sensor inspired by bat echolocation. In: International Society for Optics and Photonics, SPIE, Bellingham, vol. 9429, pp. 175–182 (2015)

    Google Scholar 

  18. Travaglione, B.: Using a single-board microcontroller and ADC to perform real-time sonar signal processing. In: 2nd Acoustical Societies Conference, pp. 1–8 (2016)

    Google Scholar 

  19. Götz, M., Gobetti, M.W., Líbano, F.B.: A grid-tie micro-inverter software development based on a low cost multiprocessor platform. In: Brazilian Symposium on Computing Systems Engineering (SBESC), New Jersey, pp. 122–127. CPS IEEE (2015)

    Google Scholar 

  20. Yin, S., Smaoui, N., Heydariaan, M., Gnawali, O.: Purple VLC: accelerating visible light communication in room-area through PRU offloading. In: International Conference on Embedded Wireless Systems and Networks, EWSN 2018, Junction, pp. 67–78 (2018)

    Google Scholar 

  21. Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies. Technical report, INCOSE-TD-2007-003-01, Seattle, WA, USA (2008)

    Google Scholar 

  22. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd edn. IEEE Press, Wiley, Hoboken (2015). https://doi.org/10.1002/9781118989166

  23. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation Using Ptolemy II. Ptolemy.org (2014)

    Google Scholar 

  24. Documentation Simulink: Simulation and model-based design (2020). https://www.mathworks.com/products/simulink.html

  25. Jeppu, Y., Rey, G.J., Apte, P.R.: Generating test cases with 100-percent requirements coverage using design of experiments. J. Aerosp. Inf. Syst. 11(10), 632–648 (2014)

    Google Scholar 

  26. Jeppu, N., Jeppu, Y.: Arguing formally about flight control laws using SLDV and NuSMV. In: Nanda, M., Jeppu, Y. (eds.) Formal Methods for Safety and Security, pp. 73–84. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4121-1_7

    Chapter  Google Scholar 

  27. Documentation SLDV: Simulink design verifier (2020). http://in.mathworks.com/products/sldesignverifier/

  28. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000). https://doi.org/10.1007/s100090050046

    Article  MATH  Google Scholar 

  29. Jeppu, N.: Exploring Simulink design verifier 03. MATLAB Central File Exchange (2021). https://www.mathworks.com/matlabcentral/fileexchange/54945-exploring-simulink-design-verifier-03. Accessed 27 July 2021

  30. Kaur, A., Arora, R.: Application of UML in real-time embedded systems. Int. J. Softw. Eng. Appl. (IJSEA) 3(2), 59–70 (2012)

    Google Scholar 

  31. Amissah, M., Toba, A.L., Handley, H., Seck, M.D.: Towards a framework for executable systems modeling: an executable systems modeling language (ESysML). In: Model-driven Approaches for Simulation Engineering Symposium, SpringSim (Mod4Sim) 2018, pp. 9:1–9:12. ACM (2018)

    Google Scholar 

  32. Fernandes, J.M., Machado, R.J.: Can UML be a system-level language for embedded software? In: Kleinjohann, B., Kim, K.H., Kleinjohann, L., Rettberg, A. (eds.) Design and Analysis of Distributed Embedded Systems. ITIFIP, vol. 91, pp. 1–10. Springer, Boston, MA (2002). https://doi.org/10.1007/978-0-387-35599-3_1

    Chapter  Google Scholar 

  33. El Ariss, O., Xu, D.: System modeling with UML state machines. In: Handbook of Finite State Based Models and Applications, pp. 371–386. Chapman and Hall/CRC, New York (2012). https://doi.org/10.1201/b13055-19

  34. Kobryn, C.: UML 3.0 and the future of modeling. Softw. Syst. Model. 3(1), 4–8 (2004). https://doi.org/10.1007/s10270-004-0051-4

    Article  Google Scholar 

  35. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann, San Francisco (2009)

    Google Scholar 

  36. Selic, B., Grard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems, 1st edn. Morgan Kaufmann, San Francisco (2013)

    Google Scholar 

  37. Sahu, S., Schorr, R., Medina-Bulo, I., Wagner, M.: Model translation from Papyrus-RT into the nuXmv model checker. In: Cleophas, L., Massink, M. (eds.) SEFM 2020. LNCS, vol. 12524, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67220-1_1

    Chapter  Google Scholar 

  38. Besnard, V., Brun, M., Jouault, F., Teodorov, C., Dhaussy, P.: Unified LTL verification and embedded execution of UML models. In: 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, New York, NY, USA, MODELS 2018, pp. 112–122. ACM (2018). https://doi.org/10.1145/3239372.3239395

  39. Beeck, M.: A comparison of Statecharts variants. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 128–148. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_163

    Chapter  Google Scholar 

  40. Posse, E., Dingel, J.: An executable formal semantics for UML-RT. Softw. Syst. Model. 15(1), 179–217 (2014). https://doi.org/10.1007/s10270-014-0399-z

    Article  Google Scholar 

  41. Alanwar, A., Anwar, F.M., Zhang, Y., Pearson, J., Hespanha, J., Srivastava, M.B.: Cyclops: PRU programming framework for precise timing applications. In: IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), New Jersey, pp. 1–6. IEEE (2017)

    Google Scholar 

  42. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity and effort in a large scale, distributed model driven development process. In: 35th Euromicro Conference on Software Engineering and Advanced Applications, Los Alamitos, CA, pp. 113–120. IEEE (2009)

    Google Scholar 

  43. Krogmann, K., Becker, S.: A case study on model-driven and conventional software development: the palladio editor. In: Software Engineering 2007 - Beiträge zu den Workshops, Fachtagung des GI-Fachbereichs Softwaretechnik, 27–30 March 2007, Hamburg, GI, LNI, vol. P-106, pp. 169–175 (2007)

    Google Scholar 

  44. Papotti, P.E., do Prado, A.F., de Souza, W.L., Cirilo, C.E., Pires, L.F.: A quantitative analysis of model-driven code generation through software experimentation. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 321–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_21

    Chapter  Google Scholar 

  45. Kopetz, H.: The time-triggered model of computation. In: 19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279), pp. 168–177 (1998). https://doi.org/10.1109/REAL.1998.739743

  46. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126 (2003). https://doi.org/10.1109/JPROC.2002.805821

    Article  Google Scholar 

  47. Furrer, F.: Future-Proof Software-Systems: A Sustainable Evolution Strategy. Springer Vieweg, Berlin (2019). https://doi.org/10.1007/978-3-658-19938-8

    Book  Google Scholar 

  48. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The Statemate Approach. McGraw-Hill, New York (1998)

    Google Scholar 

  49. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-Oriented Modelling and Design. Prentice-Hall Inc., Englewood Cliffs (1991)

    MATH  Google Scholar 

  50. Mellor, S.J.: Executable and translatable UML. Embed. Syst. Program. 16(2), 25–30 (2003)

    MathSciNet  Google Scholar 

  51. Starr, L., Mangogna, A., Mellor, S.: Models to Code With No Mysterious Gaps. Apress, Berkeley (2017)

    Book  Google Scholar 

  52. Brooks, R.: The behavior language; user’s guide. Technical report, AIM-1227, MIT, Artificial Intelligence Lab, Department of Electronics and Computer Science (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grubb, F., Estivill-Castro, V., Hexel, R. (2022). LLFSMs on the PRU: Executable and Verifiable Software Models on a Real-Time Microcontroller. In: Borzemski, L., Selvaraj, H., Świątek, J. (eds) Advances in Systems Engineering. ICSEng 2021. Lecture Notes in Networks and Systems, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-92604-5_35

Download citation

Publish with us

Policies and ethics