Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TSAEns: Ensemble Learning for KPI Anomaly Detection

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13155))

Abstract

Time series anomaly detection is a critical task in the domain of Artificial Intelligence for IT Operations (AIOps). Large companies that provide Internet-based services need to closely monitor massive time-series data from applications and hardware in real-time and provide timely troubleshooting to keep reliable services and smooth business. However, selecting and ensembling diverse detectors for better detection results is challenging due to the complexity of time series data. In this paper, an selection framework for time series anomaly detection, which can select proper detectors for time series data of diverse characteristics according to the detector’s performance on historical data. Also, we combine active learning methods to propose unseen samples for labeling, which can significantly alleviate the labeling overhead of operators. Experimental results show the effectiveness of the proposed framework.

C. Wang and T. Yang—These authors contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  2. Yu, G., Cai, Z., Wang, S., Chen, H., Liu, F., Liu, A.: Unsupervised online anomaly detection with parameter adaptation for kpi abrupt changes. IEEE Trans. Network Serv. Manage., 1 (2019)

    Google Scholar 

  3. Ren, H., et al.: Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD, pp. 3009–3017 (2019)

    Google Scholar 

  4. Choffnes, D.R., Bustamante, F.E., Ge, Z.: Crowdsourcing service-level network event monitoring. In: Proceedings of the 2010 ACM SIGCOMM, pp. 387–398 (2010)

    Google Scholar 

  5. Siffer, A., Fouque, P.-A., Termier, A., Largouet, C.: Anomaly detection in streams with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1067–1075 (2017)

    Google Scholar 

  6. Yaacob, A.H., Tan, I.K.T., Chien, S.F., Tan, H.K.: Arima based network anomaly detection. In: Second International Conference on Communication Software and Networks 2010, pp. 205–209 (2010)

    Google Scholar 

  7. Zhang, X., et al.: Cross-dataset time series anomaly detection for cloud systems. In: 2019 USENIX Annual Technical Conference (2019)

    Google Scholar 

  8. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: Usad: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD, pp. 3395–3404 (2020)

    Google Scholar 

  9. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD (2018)

    Google Scholar 

  10. Lin, S., Clark, R., Birke, R., Schönborn, S., Trigoni, N., Roberts, S.: Anomaly detection for time series using vae-lstm hybrid model. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4322–4326. IEEE (2020)

    Google Scholar 

  11. Wang, C., Wu, K., Zhou, T., Yu, G., Cai, Z.: Tsagen: synthetic time series generation for kpi anomaly detection. IEEE Trans. Network Serv. Manage. (2021)

    Google Scholar 

  12. Liu, D.: Opprentice: towards practical and automatic anomaly detection through machine learning. In: Proceedings of the 2015 Internet Measurement Conference, pp. 211–224 (2015)

    Google Scholar 

  13. Zhao, N., Zhu, J., Liu, R., Liu, D., Zhang, M., Pei, D.: Label-less: a semi-automatic labelling tool for kpi anomalies. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1882–1890 (2019)

    Google Scholar 

  14. Ying, Y., Duan, J., Wang, C., Wang, Y., Xu, B.: Automated model selection for time-series anomaly detection (2020)

    Google Scholar 

  15. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated time-series anomaly detection. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1939–1947 (2015)

    Google Scholar 

  16. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining 2008, pp. 413–422 (2008)

    Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discovery Data 6(1), 1–39 (2012)

    Article  Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)

    Google Scholar 

  19. Chen, P., Wang, Y.: Optimized kd tree application in instance-based learning. In: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 2, pp. 187–191 (2008)

    Google Scholar 

  20. Aiops challenge (2018). http://iops.ai/dataset_list/

  21. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms - the numenta anomaly benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 38–44 (2015)

    Google Scholar 

  22. Wen, T., Keyes, R.: Time series anomaly detection using convolutional neural networks and transfer learning, arXiv preprint arXiv:1905.13628 (2019)

  23. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), July 2009. doi: 10.1145/1541880.1541882

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China (2020YFC2003400), the National Natural Science Foundation of China (62172155, 62102425, 62072465), and the Science and Technology Innovation Program of Hunan Province (2021RC2071).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Yang, T., Cui, J., Li, Y., Zhou, T., Cai, Z. (2022). TSAEns: Ensemble Learning for KPI Anomaly Detection. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer, Cham. https://doi.org/10.1007/978-3-030-95384-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95384-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95383-6

  • Online ISBN: 978-3-030-95384-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics