Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decompression Modelling and Algorithm

  • Chapter
  • First Online:
Engineering and Medicine in Extreme Environments
  • 466 Accesses

Abstract

Decompression illness and decompression sickness are pathologies mostly associated with diving incidents, which result from excessive bubble formation from dissolved gas. Great efforts are undertaken to perform research to understand the pathology and fundamental mechanisms, which result from the dynamic effects of compression and decompression. In this chapter, the clinical manifestation of decompression illness including the impact on different physiological systems is presented. Principles in physics, chemistry and biology are investigated that build the base to understand the mechanisms of decompression and bubble kinetics. These principles are then used to derive algorithms and concepts to calculate decompression schedules, which aim to safely step the diver back to the surface. Different approaches are dissected for their general ideas and implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vann R.D., Butler F.K., Mitchell, S.J., Moon R.E. (2011) Decompression illness. The Lancet, 377(9760), 153–164

    Article  Google Scholar 

  2. Edmonds C., Bennett M., Lippmann J., Mitchell S. (2015) Diving and subaquatic medicine. CRC Press

    Book  Google Scholar 

  3. Brubakk A.O., Neuman T. S. (2003) Bennett and Elliottls’ physiology and medicine of diving. Saunders Book Company

    Google Scholar 

  4. Blatteau, J., et al. (2011) Prognostic factors of spinal cord decompression sickness in recreational diving: retrospective and multicentric analysis of 279 cases. Neurocritical care, 15(1), 120–127

    Article  Google Scholar 

  5. Doolette DJ, Mitchell SL. (2003) A biophysical basis for inner ear decompression sickness. Journal of Applied Physiology; 94:2145–50

    Article  Google Scholar 

  6. Farmer Jr, J.C., Thomas Jr, W.G., Youngblood Jr, D.G., Bennett Jr, P.B. (1976). Inner ear decompression sickness. The Laryngoscope, 86(9), 1315–1327

    Article  Google Scholar 

  7. Bert P. (1878) La pression barometrique: recherches de physiologie experimentale. G. Masson.

    Google Scholar 

  8. Vann RD, Clark HG (1975) Bubble growth and mechanical properties of tissue in decompression. Undersea Biomed. Res. vol. 2, pp 185–194

    Google Scholar 

  9. Doolette, DJ., & Mitchell, SJ. (2001) The physiological kinetics of nitrogen and the prevention of decompression sickness. Clinical pharmacokinetics, 40(1), 1–14

    Article  Google Scholar 

  10. Mitchell, SJ., & Doolette, DJ. (2017) Extreme scuba diving medicine. In Extreme Sports Medicine (pp. 313–333). Springer, Cham

    Google Scholar 

  11. Cibis T, et al. (2017) Diving into research of biomedical engineering in scuba diving. IEEE reviews in biomedical engineering 10: 323–333

    Article  Google Scholar 

  12. Boycott AE, Damant GCC, and Haldane JS (1908) The prevention of compressed-air illness. Epidemiology & Infection, 8(3), 342–443

    Google Scholar 

  13. Navy, U. S. (1993). US Navy diving manual. Washington, DC: US Navy.

    Google Scholar 

  14. Wienke, B. R. (2018). Dive computer profile data and on the fly and end of dive risk estimators. J. Appl. Biotech. Bioeng, 5(1), 00118.

    Google Scholar 

  15. Workman, R.D. (1965). Calculation of Decompression Schedules for Nitrogen-Oxygen and Helium-Oxygen Dives. Interim Report Research Report 6–65, U.S. Navy Experimental Diving Unit, Washington, D.C., USA

    Google Scholar 

  16. Buehlmann A. A. (1995) Tauchmedizin. Springer-Verlag. ISBN:3-540-55581-1

    Book  Google Scholar 

  17. Baker E. C. (1998) Understanding M-values. Immersed, 3(3), 23–27

    MathSciNet  Google Scholar 

  18. Kuch, B., Bedini, R., Buttazzo, G., & Sieber, A. (2009) Mathematical platform for studies on VPM and Buehlmann decompression algorithms. In Proc. Of the 35th Annual Scientific Meeting of the European Underwater and Baromedical Society (EUBS 2009), Aberdeen (pp. 25–8)

    Google Scholar 

  19. Yount D.E., Hoffman D.C. (1986) On the use of a bubble formation model to calculate diving tables. Aviation, space, and environmental medicine, 57(2), 149–156

    Google Scholar 

  20. Yount D., Hoffman, D. (2012) Model to Calculate Nitrogen and Helium Diving Tables. Physiological Function in Special Environments, 95.

    Google Scholar 

  21. Wienke, B. R. Biophysics of compression and decompression. http://researchgate.net

  22. Wienke BR (2001) Basic decompression theory and application. Flagstaff, AZ, USA: Best Publishing Co

    Google Scholar 

  23. Buckles RG (1968) The physics of bubble formation and growth. Aerospace Medicine, vol. 39, pp 1062–1069

    Google Scholar 

  24. Gutvik CR, Brubakk AO (2009) A dynamic two-phase model for vascular bubble formation during decompression of diver. IEEE Tran. Biomed. Eng. vol 56, no 3, pp 884–889

    Article  Google Scholar 

  25. Gutvik CR, et al. (2010) Parameter estimation of the Copernicus decompression model with venous gas emboli in human divers. Med. Biol. Eng. Comput., vol 48, no 7, pp 625–636

    Article  Google Scholar 

  26. Gutvik CR, et al. (2010) Use of heart rate monitoring for an individualized and time-variant decompression model. Eur. J. Appl. Physiology, vol 110, no 5, pp 885–892

    Article  Google Scholar 

  27. Eftedal I, et al. (2016) Immune and Inflammatory responses to free diving calculated from leukocyte gene expression profiles. Physiol. Genomics, vol 48, pp 80–84

    Google Scholar 

  28. Ardestani, S. B., Eftedal, I., Matchkov, V., Pedersen, M. (2018) Endothelial function and cardiovascular stress markers after a single dive in aging rats (ApoE knockout rats). The FASEB Journal, 32, 843–12.

    Article  Google Scholar 

  29. Madden D., Thom S.R., Dujic Z. (2016) Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress. Medical hypotheses, 86, 80–84

    Article  Google Scholar 

  30. Zarak, M., et al. (2020) Galectin-3 and cardiovascular biomarkers reflect adaptation response to scuba diving. International journal of sports medicine, 41(05), 285–291

    Article  Google Scholar 

  31. Sureda A., Batle J. M., et al. (2014) Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiological genomics, 46(17), 647–654

    Article  Google Scholar 

  32. Kiboub F. Z., Mollerlokke, A., Hjelde A., Flatberg A., Loennechen, O., Eftedal I. (2018) Blood gene expression and vascular function biomarkers in professional saturation diving. Frontiers in Physiology, 9, 937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Cibis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cibis, T. (2022). Decompression Modelling and Algorithm. In: Cibis, T., McGregor AM, C. (eds) Engineering and Medicine in Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-96921-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96921-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96920-2

  • Online ISBN: 978-3-030-96921-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics