Abstract
Mitotic figure count is an important prognostic factor for breast cancer grading. However, the mitotic identification often suffers from the domain variations. We propose a two-step domain-invariant mitosis detection method based on Faster RCNN and a convolutional neural network (CNN). We generate various domain-shifted versions of existing histopathology images using a stain augmentation technique, enabling our method to effectively learn various stain domains and achieve better generalization. The performance of our method is evaluated on the preliminary test and final test sets of the MIDOG-2021 challenge, resulting in F1 score of 68.95% and 67.64% respectively. The experimental results demonstrate that the proposed mitosis detection method can achieve promising performance for domain-shifted histopathology images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bloom, H., Richardson, W.: Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br. J. Cancer 11(3), 1–14 (1957)
Roux, L., Racoceanu, D., Lomenie, N., Kulikova, M., Irshad, H., Klossa, J.: Mitosis detection in breast cancer histological images an ICPR 2012 contest. J. Pathol. Inform. 30(4), 1–7 (2013)
Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)
MITOS-ATYPIA-14 Homepage. https://mitos-atypia-14.grand-challenge.org/. Accessed 10 Nov 2021
Veta, M., Heng, Y.J., Stathonikos, N., Bejnordi, B.E., Beca, F., Wollmann, T.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54(1), 111–121 (2019)
Sebai, M., Wang, X., Wang, T.: MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Med. Biol. Eng. Comput. 58(7), 1603–1623 (2020). https://doi.org/10.1007/s11517-020-02175-z
Mathew, T., Kini, J.R., Rajan, J.: Computational methods for automated mitosis detection in histopathology images: a review. Biocybern. Biomed. Eng. 41(1), 64–82 (2020)
Nateghi, R., Danyali, H., Helfroush, M.S.: A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images. Artif. Intell. Med. 114, 102048 (2021)
Sohail, A., Khan, A., Wahab, N., Zameer, A., Khan, S.: A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images. Sci. Rep. 11(1), 1–18 (2021)
Balkenhol, M.C., Tellez, D., Vreuls, W., Clahsen, P.C., Pinckaers, H., Ciompi, F.: Deep learning assisted mitotic counting for breast cancer. Nat. Lab. Invest. 99, 1596–1606 (2019)
Aubreville, M., et al.: Quantifying the scanner-induced domain gap in mitosis detection. arXiv preprint, pp. 1–4 (2021)
Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)
Bug, D., et al.: Context-based normalization of histological stains using deep convolutional features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 135–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_16
Leo, P., Lee, G., Shih, N.N., Elliott, R., Feldman, M.D., Madabhushi, A.: Evaluating stability of histomorphometric features across scanner and staining variations: prostate cancer diagnosis from whole slide images. J. Med. Imaging 3(4), 1–14 (2016)
Lafarge, M.W., Pluim, J.P., Eppenhof, K.A., Veta, M.: Learning domain-invariant representations of histological images. Front. Med. 6(1), 162–174 (2019)
Tellez, D., Balkenhol, M., Karssemeijer, N., Litjens, G., van der Laak, J., Ciompi, F.: H and E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. In: Medical Imaging Digital Pathology International Society for Optics and Photonics, pp. 1–11 (2018)
Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 1–13 (2019)
Otalora, S., Atzori, M., Andrearczyk, V., Khan, A., Mueller, H.: Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology. Front. Bioeng. Biotechnol. 7(1), 198–211 (2019)
Lafarge, M.W., Pluim, J.P.W., Eppenhof, K.A.J., Moeskops, P., Veta, M.: Domain-adversarial neural networks to address the appearance variability of histopathology images. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_10
Tschuchnig, M.E., Oostingh, G.J., Gadermayr, M.: Generative adversarial networks in digital pathology: a survey on trends and future potential. Patterns 1(6), 1–11 (2020)
Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 2(1), 325–336 (2021)
Aubreville, M., et al.: Mitosis domain generalization challenge. Zenodo (2021). https://doi.org/10.5281/zenodo.4573978
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
StainTools Homepage. https://github.com/Peter554/StainTools. Accessed 10 Nov 2021
Solovyev, R., Wang, W., Gabruseva, T.: Weighted boxes fusion: ensembling boxes from different object detection models. Image Vis. Comput. 107(1), 1–12 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Nateghi, R., Pourakpour, F. (2022). Two-Step Domain Adaptation for Mitotic Cell Detection in Histopathology Images. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-97281-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97280-6
Online ISBN: 978-3-030-97281-3
eBook Packages: Computer ScienceComputer Science (R0)