Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two-Step Domain Adaptation for Mitotic Cell Detection in Histopathology Images

  • Conference paper
  • First Online:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13166))

  • 1154 Accesses

Abstract

Mitotic figure count is an important prognostic factor for breast cancer grading. However, the mitotic identification often suffers from the domain variations. We propose a two-step domain-invariant mitosis detection method based on Faster RCNN and a convolutional neural network (CNN). We generate various domain-shifted versions of existing histopathology images using a stain augmentation technique, enabling our method to effectively learn various stain domains and achieve better generalization. The performance of our method is evaluated on the preliminary test and final test sets of the MIDOG-2021 challenge, resulting in F1 score of 68.95% and 67.64% respectively. The experimental results demonstrate that the proposed mitosis detection method can achieve promising performance for domain-shifted histopathology images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloom, H., Richardson, W.: Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br. J. Cancer 11(3), 1–14 (1957)

    Article  Google Scholar 

  2. Roux, L., Racoceanu, D., Lomenie, N., Kulikova, M., Irshad, H., Klossa, J.: Mitosis detection in breast cancer histological images an ICPR 2012 contest. J. Pathol. Inform. 30(4), 1–7 (2013)

    Google Scholar 

  3. Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)

    Article  Google Scholar 

  4. MITOS-ATYPIA-14 Homepage. https://mitos-atypia-14.grand-challenge.org/. Accessed 10 Nov 2021

  5. Veta, M., Heng, Y.J., Stathonikos, N., Bejnordi, B.E., Beca, F., Wollmann, T.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54(1), 111–121 (2019)

    Article  Google Scholar 

  6. Sebai, M., Wang, X., Wang, T.: MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Med. Biol. Eng. Comput. 58(7), 1603–1623 (2020). https://doi.org/10.1007/s11517-020-02175-z

    Article  Google Scholar 

  7. Mathew, T., Kini, J.R., Rajan, J.: Computational methods for automated mitosis detection in histopathology images: a review. Biocybern. Biomed. Eng. 41(1), 64–82 (2020)

    Article  Google Scholar 

  8. Nateghi, R., Danyali, H., Helfroush, M.S.: A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images. Artif. Intell. Med. 114, 102048 (2021)

    Article  Google Scholar 

  9. Sohail, A., Khan, A., Wahab, N., Zameer, A., Khan, S.: A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  10. Balkenhol, M.C., Tellez, D., Vreuls, W., Clahsen, P.C., Pinckaers, H., Ciompi, F.: Deep learning assisted mitotic counting for breast cancer. Nat. Lab. Invest. 99, 1596–1606 (2019)

    Article  Google Scholar 

  11. Aubreville, M., et al.: Quantifying the scanner-induced domain gap in mitosis detection. arXiv preprint, pp. 1–4 (2021)

    Google Scholar 

  12. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  13. Bug, D., et al.: Context-based normalization of histological stains using deep convolutional features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 135–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_16

    Chapter  Google Scholar 

  14. Leo, P., Lee, G., Shih, N.N., Elliott, R., Feldman, M.D., Madabhushi, A.: Evaluating stability of histomorphometric features across scanner and staining variations: prostate cancer diagnosis from whole slide images. J. Med. Imaging 3(4), 1–14 (2016)

    Article  Google Scholar 

  15. Lafarge, M.W., Pluim, J.P., Eppenhof, K.A., Veta, M.: Learning domain-invariant representations of histological images. Front. Med. 6(1), 162–174 (2019)

    Article  Google Scholar 

  16. Tellez, D., Balkenhol, M., Karssemeijer, N., Litjens, G., van der Laak, J., Ciompi, F.: H and E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. In: Medical Imaging Digital Pathology International Society for Optics and Photonics, pp. 1–11 (2018)

    Google Scholar 

  17. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 1–13 (2019)

    Article  Google Scholar 

  18. Otalora, S., Atzori, M., Andrearczyk, V., Khan, A., Mueller, H.: Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology. Front. Bioeng. Biotechnol. 7(1), 198–211 (2019)

    Article  Google Scholar 

  19. Lafarge, M.W., Pluim, J.P.W., Eppenhof, K.A.J., Moeskops, P., Veta, M.: Domain-adversarial neural networks to address the appearance variability of histopathology images. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_10

    Chapter  Google Scholar 

  20. Tschuchnig, M.E., Oostingh, G.J., Gadermayr, M.: Generative adversarial networks in digital pathology: a survey on trends and future potential. Patterns 1(6), 1–11 (2020)

    Article  Google Scholar 

  21. Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 2(1), 325–336 (2021)

    Article  Google Scholar 

  22. Aubreville, M., et al.: Mitosis domain generalization challenge. Zenodo (2021). https://doi.org/10.5281/zenodo.4573978

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  24. StainTools Homepage. https://github.com/Peter554/StainTools. Accessed 10 Nov 2021

  25. Solovyev, R., Wang, W., Gabruseva, T.: Weighted boxes fusion: ensembling boxes from different object detection models. Image Vis. Comput. 107(1), 1–12 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Nateghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nateghi, R., Pourakpour, F. (2022). Two-Step Domain Adaptation for Mitotic Cell Detection in Histopathology Images. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97281-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97280-6

  • Online ISBN: 978-3-030-97281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics