Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Trends in Fast Reroute

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2022)

Abstract

IP networks have evolved into converged and multimedia platforms. These networks nowadays support diverse service types, including crucial and real-time applications. However, these services have higher requirements on network performance and are negatively impacted by the unpredictable failure. When a line or node failure occurs, the convergence process starts in the network. This process can take a long time and can negatively impact users with data loss and especially service unavailability. The solution to these problems is a fast redirection of communication to the alternative path - Fast ReRoute (FRR) technology. This article focuses on analyzing current FRR mechanisms in this area, such as PURR, Fibbing, and mechanisms based on arborescences (DAG-FRR, Cluster-FRR, and Augment-FRR). These mechanisms represent the newest research in FRR, and in this paper, we describe each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiesa, M., et al.: Fast ReRoute on programmable switches. IEEE/ACM Trans. Networking (2021). https://doi.org/10.1109/TNET.2020.3045293

    Article  Google Scholar 

  2. Gray, W., Tsokanos, A., Kirner, R.: Multi-link failure effects on MPLS resilient fast-reroute network architectures. In: Proceedings - 2021 IEEE 24th International Symposium on Real-Time Distributed Computing, ISORC 2021, pp. 29–33 (2021). https://doi.org/10.1109/ISORC52013.2021.00015

  3. Nelakuditi, S., et al.: Fast local rerouting for handling transient link failures. IEEE/ACM Trans. Networking 15, 359–372 (2007)

    Article  Google Scholar 

  4. Zhang, B., Wu, J., Bi, J.: RPFP: IP fast reroute with providing complete protection and without using tunnels. In: 2013 IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), pp. 1–10 (2013)

    Google Scholar 

  5. Elhourani, T., Gopalan, A., Ramasubramanian, S.: IP fast rerouting for multi-link failures. IEEE/ACM Trans. Networking 24, 3014–3025 (2016). https://doi.org/10.1109/TNET.2016.2516442

    Article  Google Scholar 

  6. Stephens, B., Cox, A.L., Rixner, S.: Scalable multi-failure fast failover via forwarding table compression. In: Symposium on Software Defined Networking (SDN) Research, SOSR 2016. (2016). https://doi.org/10.1145/2890955.2890957

  7. Borokhovich, M., Schmid, S.: How (Not) to shoot in your foot with SDN local fast failover. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 68–82. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_6

    Chapter  Google Scholar 

  8. Liu, V., Halperin, D., Krishnamurthy, A., Anderson, T.: F10: A Fault-Tolerant Engineered Network. In: 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pp. 399–412. USENIX Association, Lombard (2013)

    Google Scholar 

  9. Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira, M., Shenker, S.: Ensuring Connectivity via Data Plane Mechanisms. In: 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pp. 113–126. USENIX Association, Lombard (2013)

    Google Scholar 

  10. Braun, W., Menth, M.: Loop-free alternates with loop detection for fast reroute in software-defined carrier and data center networks. J. Netw. Syst. Manage. 24(3), 470–490 (2016). https://doi.org/10.1007/s10922-016-9369-9

    Article  Google Scholar 

  11. Csikor, L., Rétvári, G.: On providing fast protection with remote loop-free alternates. Telecommun. Syst. 60(4), 485–502 (2015). https://doi.org/10.1007/s11235-015-0006-9

    Article  Google Scholar 

  12. Sarkar, P., Hegde, S., Bowers, C., Gredler, H., Litkowski, S.: Remote-LFA Node Protection and Manageability. RFC8102 (2017)

    Google Scholar 

  13. Papan, J., Segec, P., Paluch, P., Uramova, J., Moravcik, M.: The new Multicast Repair (M-REP) IP fast reroute mechanism. Concurrency Comput. 32 (2018). https://doi.org/10.1002/cpe.5105

  14. Papan, J., Segec, P., Yeremenko, O., Bridova, I., Hodon, M.: Enhanced multicast repair fast reroute mechanism for smart sensors IoT and network infrastructure. Sensors. 20, 3428 (2020). https://doi.org/10.3390/s20123428

    Article  Google Scholar 

  15. Koushik, K., Cetin, R., Nadeau, T.: Multiprotocol Label Switching (MPLS) Traffic Engineering Management Information Base for Fast Reroute (2011). https://rfc-editor.org/rfc/rfc6445.txt

  16. Foerster, K.T., Parham, M., Chiesa, M., Schmid, S.: TI-MFA: keep calm and reroute segments fast. In: INFOCOM 2018 - IEEE Conference on Computer Communications Workshops, pp. 415–420 (2018). https://doi.org/10.1109/INFCOMW.2018.8406885

  17. P4 Language Specification. https://opennetworking.org/wp-content/uploads/2020/10/P416-Language-Specification-wd.html

  18. Bashandy, A., Filsfils, C., Mohapatra, P.: BGP Prefix Independent Convergence. Internet Engineering Task Force (2021)

    Google Scholar 

  19. Holterbach, T., et al.: Swift: Predictive fast reroute. dl.acm.org. 14, 460–473 (2017). https://doi.org/10.1145/3098822.3098856

  20. Borokhovich, M., Schiff, L., Schmid, S.: Provable Data Plane Connectivity with Local Fast Failover Introducing OpenFlow Graph Algorithms. https://doi.org/10.1145/2620728.2620746

  21. Fibbing: Central Control Over Distributed Routing. http://fibbing.net/

  22. Lee, S.S.W., Chan, K.-Y., Wong, T.-S., Xiao, B.-X.: A fast failure recovery scheme for fibbing networks. IEEE Open J. Commun. Soc. 1, 1196–1212 (2020). https://doi.org/10.1109/OJCOMS.2020.3018197

    Article  Google Scholar 

  23. Goyal, M., Ramakrishnan, K.K., Feng, W.C.: Achieving faster failure detection in OSPF networks. IEEE International Conference on Communications. 1, 296–300 (2003). https://doi.org/10.1109/ICC.2003.1204188

    Article  Google Scholar 

  24. Tsegaye, Y., Geberehana, T.: OSPF Convergence Times (2013)

    Google Scholar 

  25. Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Grafting arborescences for extra resilience of fast rerouting schemes. In: Proceedings - IEEE INFOCOM. 2021-May (2021). https://doi.org/10.1109/INFOCOM42981.2021.9488782

  26. Yang, B., Liu, J., Shenker, S., Li, J., Zheng, K.: Keep Forwarding: Towards k-link failure resilient routing. In: Proceedings - IEEE INFOCOM, pp. 1617–1625 (2014). https://doi.org/10.1109/INFOCOM.2014.6848098

  27. Chiesa, M., et al.: On the resiliency of static forwarding tables. IEEE/ACM Trans. Networking 25, 1133–1146 (2017). https://doi.org/10.1109/TNET.2016.2619398

    Article  Google Scholar 

  28. Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Bonsai: efficient fast failover routing using small arborescences. In: Proceedings - 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2019, pp. 276–288 (2019). https://doi.org/10.1109/DSN.2019.00039

  29. Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Improved fast rerouting using postprocessing. In: Proceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 173–182 (2019). https://doi.org/10.1109/SRDS47363.2019.00028

  30. Foerster, K.T., Pignolet, Y.A., Schmid, S., Tredan, G.: Local fast failover routing with low stretch. Comput. Commun. Rev. 48, 35–41 (2018). https://doi.org/10.1145/3211852.3211858

    Article  Google Scholar 

  31. Chiesa, M., et al.: Fast ReRoute on programmable switches. IEEE/ACM Trans. Networking 29, 637–650 (2021). https://doi.org/10.1109/TNET.2020.3045293

    Article  Google Scholar 

  32. Lejoly, F., Bulcke, C. Vanden, Bonaventure, O.: Managing future networks: a case study with Fibbing and Segment Routing (2017)

    Google Scholar 

Download references

Acknowledgment

This publication was realized with support of the Operational Programme Integrated Infrastructure in frame of the project: Intelligent systems for UAV real-time operation and data processing, code ITMS2014+: 313011V422 and co-financed by the Europen Regional Development Found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Papan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papan, J., Filipko, A., Chovanec, T., Yeremenko, O. (2022). New Trends in Fast Reroute. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol 470. Springer, Cham. https://doi.org/10.1007/978-3-031-04829-6_53

Download citation

Publish with us

Policies and ethics