Abstract
IP networks have evolved into converged and multimedia platforms. These networks nowadays support diverse service types, including crucial and real-time applications. However, these services have higher requirements on network performance and are negatively impacted by the unpredictable failure. When a line or node failure occurs, the convergence process starts in the network. This process can take a long time and can negatively impact users with data loss and especially service unavailability. The solution to these problems is a fast redirection of communication to the alternative path - Fast ReRoute (FRR) technology. This article focuses on analyzing current FRR mechanisms in this area, such as PURR, Fibbing, and mechanisms based on arborescences (DAG-FRR, Cluster-FRR, and Augment-FRR). These mechanisms represent the newest research in FRR, and in this paper, we describe each of them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chiesa, M., et al.: Fast ReRoute on programmable switches. IEEE/ACM Trans. Networking (2021). https://doi.org/10.1109/TNET.2020.3045293
Gray, W., Tsokanos, A., Kirner, R.: Multi-link failure effects on MPLS resilient fast-reroute network architectures. In: Proceedings - 2021 IEEE 24th International Symposium on Real-Time Distributed Computing, ISORC 2021, pp. 29–33 (2021). https://doi.org/10.1109/ISORC52013.2021.00015
Nelakuditi, S., et al.: Fast local rerouting for handling transient link failures. IEEE/ACM Trans. Networking 15, 359–372 (2007)
Zhang, B., Wu, J., Bi, J.: RPFP: IP fast reroute with providing complete protection and without using tunnels. In: 2013 IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), pp. 1–10 (2013)
Elhourani, T., Gopalan, A., Ramasubramanian, S.: IP fast rerouting for multi-link failures. IEEE/ACM Trans. Networking 24, 3014–3025 (2016). https://doi.org/10.1109/TNET.2016.2516442
Stephens, B., Cox, A.L., Rixner, S.: Scalable multi-failure fast failover via forwarding table compression. In: Symposium on Software Defined Networking (SDN) Research, SOSR 2016. (2016). https://doi.org/10.1145/2890955.2890957
Borokhovich, M., Schmid, S.: How (Not) to shoot in your foot with SDN local fast failover. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 68–82. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_6
Liu, V., Halperin, D., Krishnamurthy, A., Anderson, T.: F10: A Fault-Tolerant Engineered Network. In: 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pp. 399–412. USENIX Association, Lombard (2013)
Liu, J., Panda, A., Singla, A., Godfrey, B., Schapira, M., Shenker, S.: Ensuring Connectivity via Data Plane Mechanisms. In: 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pp. 113–126. USENIX Association, Lombard (2013)
Braun, W., Menth, M.: Loop-free alternates with loop detection for fast reroute in software-defined carrier and data center networks. J. Netw. Syst. Manage. 24(3), 470–490 (2016). https://doi.org/10.1007/s10922-016-9369-9
Csikor, L., Rétvári, G.: On providing fast protection with remote loop-free alternates. Telecommun. Syst. 60(4), 485–502 (2015). https://doi.org/10.1007/s11235-015-0006-9
Sarkar, P., Hegde, S., Bowers, C., Gredler, H., Litkowski, S.: Remote-LFA Node Protection and Manageability. RFC8102 (2017)
Papan, J., Segec, P., Paluch, P., Uramova, J., Moravcik, M.: The new Multicast Repair (M-REP) IP fast reroute mechanism. Concurrency Comput. 32 (2018). https://doi.org/10.1002/cpe.5105
Papan, J., Segec, P., Yeremenko, O., Bridova, I., Hodon, M.: Enhanced multicast repair fast reroute mechanism for smart sensors IoT and network infrastructure. Sensors. 20, 3428 (2020). https://doi.org/10.3390/s20123428
Koushik, K., Cetin, R., Nadeau, T.: Multiprotocol Label Switching (MPLS) Traffic Engineering Management Information Base for Fast Reroute (2011). https://rfc-editor.org/rfc/rfc6445.txt
Foerster, K.T., Parham, M., Chiesa, M., Schmid, S.: TI-MFA: keep calm and reroute segments fast. In: INFOCOM 2018 - IEEE Conference on Computer Communications Workshops, pp. 415–420 (2018). https://doi.org/10.1109/INFCOMW.2018.8406885
P4 Language Specification. https://opennetworking.org/wp-content/uploads/2020/10/P416-Language-Specification-wd.html
Bashandy, A., Filsfils, C., Mohapatra, P.: BGP Prefix Independent Convergence. Internet Engineering Task Force (2021)
Holterbach, T., et al.: Swift: Predictive fast reroute. dl.acm.org. 14, 460–473 (2017). https://doi.org/10.1145/3098822.3098856
Borokhovich, M., Schiff, L., Schmid, S.: Provable Data Plane Connectivity with Local Fast Failover Introducing OpenFlow Graph Algorithms. https://doi.org/10.1145/2620728.2620746
Fibbing: Central Control Over Distributed Routing. http://fibbing.net/
Lee, S.S.W., Chan, K.-Y., Wong, T.-S., Xiao, B.-X.: A fast failure recovery scheme for fibbing networks. IEEE Open J. Commun. Soc. 1, 1196–1212 (2020). https://doi.org/10.1109/OJCOMS.2020.3018197
Goyal, M., Ramakrishnan, K.K., Feng, W.C.: Achieving faster failure detection in OSPF networks. IEEE International Conference on Communications. 1, 296–300 (2003). https://doi.org/10.1109/ICC.2003.1204188
Tsegaye, Y., Geberehana, T.: OSPF Convergence Times (2013)
Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Grafting arborescences for extra resilience of fast rerouting schemes. In: Proceedings - IEEE INFOCOM. 2021-May (2021). https://doi.org/10.1109/INFOCOM42981.2021.9488782
Yang, B., Liu, J., Shenker, S., Li, J., Zheng, K.: Keep Forwarding: Towards k-link failure resilient routing. In: Proceedings - IEEE INFOCOM, pp. 1617–1625 (2014). https://doi.org/10.1109/INFOCOM.2014.6848098
Chiesa, M., et al.: On the resiliency of static forwarding tables. IEEE/ACM Trans. Networking 25, 1133–1146 (2017). https://doi.org/10.1109/TNET.2016.2619398
Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Bonsai: efficient fast failover routing using small arborescences. In: Proceedings - 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2019, pp. 276–288 (2019). https://doi.org/10.1109/DSN.2019.00039
Foerster, K.T., Kamisinski, A., Pignolet, Y.A., Schmid, S., Tredan, G.: Improved fast rerouting using postprocessing. In: Proceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 173–182 (2019). https://doi.org/10.1109/SRDS47363.2019.00028
Foerster, K.T., Pignolet, Y.A., Schmid, S., Tredan, G.: Local fast failover routing with low stretch. Comput. Commun. Rev. 48, 35–41 (2018). https://doi.org/10.1145/3211852.3211858
Chiesa, M., et al.: Fast ReRoute on programmable switches. IEEE/ACM Trans. Networking 29, 637–650 (2021). https://doi.org/10.1109/TNET.2020.3045293
Lejoly, F., Bulcke, C. Vanden, Bonaventure, O.: Managing future networks: a case study with Fibbing and Segment Routing (2017)
Acknowledgment
This publication was realized with support of the Operational Programme Integrated Infrastructure in frame of the project: Intelligent systems for UAV real-time operation and data processing, code ITMS2014+: 313011V422 and co-financed by the Europen Regional Development Found.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Papan, J., Filipko, A., Chovanec, T., Yeremenko, O. (2022). New Trends in Fast Reroute. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol 470. Springer, Cham. https://doi.org/10.1007/978-3-031-04829-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-04829-6_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04828-9
Online ISBN: 978-3-031-04829-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)