Abstract
Large organizations and business centers use cloud services as a computing technology for their business purposes. Nevertheless, the use of cloud computing has resulted in creation of huge data centers. The major issues that occur in data centers are managing the infrastructural resources, maintaining the cost of applications (tasks), security, and high usage of energy. It represents cloud computing provides resources based on the principle of virtualization and pay-as-you-go model. The resources such as storage, CPU, network, and memory that are available in virtual machine need to be monitored frequently. This resources management has become a wide area of research. The optimization algorithm called Genetically Enhanced Shuffling Frog Leaping Algorithm (GESFLA) is implemented for the VM allocation and execution of tasks. The idea behind the proposed work is to address some of the issues such as minimizing the power consumption, costs of the running application, and to optimize the resource usage. Cloudsim toolkit is used to find the efficiency of this proposed algorithm with a Genetic Algorithm and Particle Swarm Optimization (GAPSO). Experiments are conducted using PlanetLab workload and Google Cluster Datasets which is very huge data. The experimental results indicate GESFLA’s superiority over GAPSO in terms of resource usage ratio, time to migrate the VMs, and total energy consumption.The proposed algorithm increases the performance of data center by maximizing resource utilization by 16% and migration time by 17%. Also, energy consumption is reduced in comparison with the existing algorithm GAPSO by 6%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
H. Priyanka, Analytics of application resource utilization within the virtual machine. Int. J. Sci. Res. 5(4), 1690–1693 (2016)
H. Hajj, W. El-Hajj, M. Dabbagh, T.R. Arabi, An algorithm centric energy-aware design methodology. IEEE Trans. Very Large Scale Integr. Syst. 22(11), 2431–2435 (2014)
F. Ramezani, J. Lu, F.K. Hussain, Task-based system load balancing in cloud computing using particle swarm optimization. Int. J. Parallel Prog., Springer 42, 739–754 (2014)
L. Guo, S. Zhao, S. Shen, C. Jiang, Task scheduling optimization in cloud computing based on a heuristic algorithm. J. Networks 7(3), 547–553 (2012)
H. Priyanka, M. Cherian, The challenges in virtual machine live migration and resource management. Int. J. Eng. Res. Technol. 8(11), 5 (2020)
N.K. Sharma, G. Ram Mohana Reddy, Multi-objective energy efficient virtual machines allocation at the cloud data center. IEEE Trans. Serv. Comput. 12(1), 158–171 (2019)
Y. Ge, G. Wei, GA-based task scheduler for the cloud computing systems, in Proceedings of the International Conference on Web Information Systems and Mining (WISM ’10), vol. 2, (IEEE, 2010), pp. 181–186
G. Giftson Samuel, C. Christober Asi Rajan, Hybrid: Particle Swarm Optimization–Genetic Algorithm and Particle Swarm Optimization–Shuffled Frog Leaping Algorithm for long-term generator maintenance scheduling. Int. J. Elect. Power Energy Syst., Elsevier 65, 432–442 (2015)
E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: A survey, in Approximation Algorithms for NP-Hard Problems, ed. by D. S. Hochbaum, (PWS Publishing Co, Boston, 1997), pp. 46–93
Y. Ajiro, A. Tanaka, Improving packing algorithms for server consolidation, in Proceedings of the 33rd International Computer Measurement Group Conference, December 2–7, 2007, San Diego, CA, USA, (DBLP, 2007), pp. 399–406
A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2013)
K. Dasgupta, B. Mandal, P. Dutta, J.K. Mandal, S. Dam, A genetic algorithm (GA) based load balancing strategy for cloud computing. Procedia Technol. 10, 340–347 (2013)
A.-P. Xiong, C.-X. Xu, Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center. Math. Probl. Eng. 2014, 1–8 (2014)
W.-T. Wen, C.-D. Wang, D.-S. Wu, Y.-Y. Xie, An ACO-based scheduling strategy on load balancing in cloud computing environment, in Ninth IEEE International Conference on Frontier of Computer Science and Technology, vol. 6, (IEEE, 2015), pp. 364–369
S. Wang, Z. Liu, Z. Zheng, Q. Sun, F. Yang, Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers, in Proceedings of the IEEE International Conference on Parallel and Distributed Systems, (IEEE, 2013), pp. 102–109
H. Xu, B. Yang, W. Qi, E. Ahene, A multi-objective optimization approach to workflow scheduling in clouds considering fault recovery. KSII Trans. Internet Inf. Syst. 10(3), 976–994 (2016)
S. Chitra, B. Madhusudhanan, G.R. Sakthidharan, P. Saravanan, Local minima jump PSO for workflow scheduling in cloud computing environments, in Advances in Computer Science and its Applications. Lecture Notes in Electrical Engineering, vol. 279, (Springer, 2014), pp. 1225–1234
C. Reiss, J. Wilkes, J.L. Hellerstein, Google cluster-usage traces: Format+ schema. Technical report at https://github.com/google/clusterdata, Google, Mountain View, CA, USA, Revised 2014-11-17 for version 2.2, Nov. 2011
Y. Mao, X. Chen, X. Li, Max–Min task scheduling algorithm for load balance in cloud computing, in Proceedings of International Conference on Computer Science and Information Technology. Advances in Intelligent Systems and Computing, ed. by S. Patnaik, X. Li, vol. 255, (Springer, New Delhi, 2012)
B. Santhosh, D.H. Manjaiah, A hybrid AvgTask-Min and Max-Min algorithm for scheduling tasks in cloud computing, in International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, (IEEE, 2015), pp. 325–328. https://doi.org/10.1109/ICCICCT.2015.7475298
J. Wilkes, More Google cluster data. Google research blog (Nov. 2011). Posted at http://googleresearch.blogspot.com/2011/11/more-googlecluster-data.html
J. Wilkes, Google cluster-usage traces v3. Technical report at https://github.com/google/cluster-data, Google, Mountain View, CA, USA, Nov. 2019
H. Priyanka, M. Cherian, Efficient utilization of resources of virtual machines through monitoring the cloud data center, in International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering, ed. by V. Bindhu, J. Chen, J. Tavares, vol. 637, (Springer, Singapore, 2020), pp. 645–653
H. Priyanka, M. Cherian, Novel approach to virtual machine migration in cloud computing environment – A survey. Int. J. Sci. Rep. 7(1), 81–84 (2018)
L. Weining, F. Ta, Live migration of virtual machine based on recovering system and CPU scheduling, in 6th IEEE joint International Information Technology and Artificial Intelligence Conference, Piscataway, NJ, USA, (IEEE, 2009), pp. 303–305
S.B. Melhem, A. Agarwal, N. Goel, M. Zaman, Markov prediction model for host load detection and VM placement in live migration. IEEE Access 6, 7190–7205 (2017)
A. Kishor, R. Niyogi, Multi-objective load balancing in distributed computing environment: An evolutionary computing approach, in Proceedings of the 35th Annual ACM Symposium on Applied Computing, (Association for Computing Machinery, Brno, 2020), pp. 170–172
A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers, in Concurrency and Computation: Practice and Experience, vol. 24, No. 13, (Wiley Press, New York, 2011). https://doi.org/10.1002/cpe.1867
R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. de Rose, R. Buyya, CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)
J. Singh, J. Chen, Optimizing energy consumption for cloud computing: A cluster and migration based approach (CMBA), in Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, vol. 22, No. 11, (Association for Computing Machinery (ACM), 2019), pp. 28–32
S. Rahman, A. Gupta, M. Tornatore, B. Mukherjee, Dynamic workload migration over backbone network to minimize data center electricity cost. IEEE Trans. Green Commun. Netw. 2, 570–579 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Priyanka, H., Cherian, M. (2022). Energy-Efficient Resource Management of Virtual Machine in Cloud Infrastructure. In: Buyya, R., Garg, L., Fortino, G., Misra, S. (eds) New Frontiers in Cloud Computing and Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-05528-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-05528-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05527-0
Online ISBN: 978-3-031-05528-7
eBook Packages: Computer ScienceComputer Science (R0)