Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Aggregated Fuzzy Equivalence Relations in Clustering Process

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

The aim of the work is to involve fuzzy equivalence relations and aggregation of corresponding equivalence relations in a clustering process. Namely, we introduce fuzzy equivalence relations for different attributes of objects and then we aggregate these fuzzy equivalence relations to determine the similarities of objects. It is possible to involve different weights for attributes, thus defining the importance attributes in decision making process. In the work we also present illustrative examples.

The work has been supported by European Regional Development Fund within the project Nr.1.1.1.2/16/I/001, application Nr.1.1.1.2/VIAA/4/20/707 “Fuzzy relations and fuzzy metrics for customer behavior modeling and analyis”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Baets, B., Mesiar, R.: Pseudo-metrics and \(T\)-equivalences. J. Fuzzy Math. 5, 471–481 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  3. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer, Cham (2005). https://doi.org/10.1007/b106267

  4. Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving the classical axioms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 8(5), 593–610 (2000)

    Article  MathSciNet  Google Scholar 

  5. Klement, E.P., Mesiar, R., Pap, E.: Generated triangular norms. Kibernetika 36, 363–377 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishing, Dodrecht (2000)

    Book  Google Scholar 

  7. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper II. General constructions and parametrized families. Fuzzy Sets Syst. 145, 411–438 (2004)

    Google Scholar 

  8. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms: basic notions and properties. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, pp. 17–60. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  9. Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  10. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Mesiar, R., Calvo, T., Mayor, G.: Aggregation Operators: New Trends and Applications (Studies in Fuzziness and Soft Computing). Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  12. Saminger, S., Mesiar, R., Bodenhofer, U.: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(Suppl.), 11–35 (2002)

    Google Scholar 

  13. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Grigorenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grigorenko, O., Mihailovs, V. (2022). Aggregated Fuzzy Equivalence Relations in Clustering Process. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1601. Springer, Cham. https://doi.org/10.1007/978-3-031-08971-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08971-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08970-1

  • Online ISBN: 978-3-031-08971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics