Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2022)

Abstract

Counterfactual explanations are an important solution to the Explainable AI (XAI) problem, but good, “native” counterfactuals can be hard to come by. Hence, the popular methods generate synthetic counterfactuals using “blind” perturbation, by manipulating feature values to elicit a class change. However, this strategy has other problems, notably a tendency to generate invalid data points that are out-of-distribution or that involve feature-values that do not naturally occur in a given domain. Instance-guided and case-based methods address these problems by grounding counterfactual generation in the dataset or case base, producing synthetic counterfactuals from naturally-occurring features, and guaranteeing the reuse of valid feature values. Several instance-guided methods have been proposed, but they too have their shortcomings. Some only approximate grounding in the dataset, or do not readily generalise to multi-class settings, or are limited in their ability to generate alternative counterfactuals. This paper extends recent case-based approaches by presenting a novel, general-purpose, case-based solution for counterfactual generation to address these shortcomings. We report a series of experiments to systematically explore parametric variations on common datasets, to establish the conditions for optimal performance, beyond the state-of-the-art in instance-guided methods for counterfactual XAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For now, we drop the d without loss of generality.

  2. 2.

    SciKitLearn, with deviance loss, a learning rate of 0.1, and 100 boosting stages.

  3. 3.

    As this is an instance-based technique the out-of-distribution metrics sometimes used in evaluating perturbation-based techniques are not germane.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Byrne, R.M.: The Rational Imagination: How People Create Alternatives to Reality. MIT Press, Cambridge (2007)

    Google Scholar 

  3. Byrne, R.M.: Counterfactuals in Explainable Artificial Intelligence (XAI). In: IJCAI-19, pp. 6276–6282 (2019)

    Google Scholar 

  4. Chou, Y.L., Moreira, C., Bruza, P., Ouyang, C., Jorge, J.: Counterfactuals and causability in explainable artificial intelligence: theory, algorithms, and applications. Inf. Fusion 81, 59–83 (2022)

    Article  Google Scholar 

  5. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. arXiv preprint arXiv:2004.11165 (2020)

  6. Dasarathy, B.V.: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans. Syst. Man Cybern. 24(3), 511–517 (1994)

    Article  Google Scholar 

  7. Del Ser, J., Barredo-Arrieta, A., Díaz-Rodríguez, N., Herrera, F., Holzinger, A.: Exploring the trade-off between plausibility, change intensity and adversarial power in counterfactual explanations using multi-objective optimization. arXiv preprint arXiv:2205.10232 (2022)

  8. Delaney, E., Greene, D., Keane, M.T.: Instance-based counterfactual explanations for time series classification. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 32–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86957-1_3

    Chapter  Google Scholar 

  9. Delaney, E., Greene, D., Keane, M.T.: Uncertainty estimation and out-of-distribution detection for counterfactual explanations. In: ICML21 Workshop on Algorithmic Recourse. arXiv-2107 (2021)

    Google Scholar 

  10. Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation oriented retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 157–168. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_13

    Chapter  Google Scholar 

  11. Förster, M., Hühn, P., Klier, M., Kluge, K.: Capturing users’ reality: a novel approach to generate coherent counterfactual explanations. In: Proceedings of the 54th Hawaii International Conference on System Sciences, p. 1274 (2021)

    Google Scholar 

  12. Förster, M., Klier, M., Kluge, K., Sigler, I.: Fostering human agency: a process for the design of user-centric XAI systems. In: Proceedings of the International Conference on Information Systems (ICIS) (2020)

    Google Scholar 

  13. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  14. Gerstenberg, T., Goodman, N.D., Lagnado, D.A., Tenenbaum, J.B.: A counterfactual simulation model of causal judgments for physical events. Psychol. Rev. (2021)

    Google Scholar 

  15. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations. In: Proceedings of the IEEE 5th International Conference on Data Science and Advanced Analytics, pp. 80–89. IEEE (2018)

    Google Scholar 

  16. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation". AI Mag. 38(3), 50–57 (2017)

    Google Scholar 

  17. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  18. Gunning, D.: Explainable Artificial Intelligence (XAI). DARPA, Web 2(2) (2017)

    Google Scholar 

  19. Karimi, A.H., von Kügelgen, J., Schölkopf, B., Valera, I.: Algorithmic recourse under imperfect causal knowledge. In: NIPS 33 (2020)

    Google Scholar 

  20. Keane, M.T., Kenny, E.M., Delaney, E., Smyth, B.: If only we had better counterfactual explanations. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4466–4474 (2021). https://doi.org/10.24963/ijcai.2021/609

  21. Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_11

    Chapter  Google Scholar 

  22. Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using case-based reasoning. In: IJCAI-19, pp. 2708–2715 (2019)

    Google Scholar 

  23. Kenny, E.M., Keane, M.T.: Explaining deep learning using examples: optimal feature weighting methods for twin systems using post-hoc, explanation-by-example in XAI. Knowl.-Based Syst. 233, 107530 (2021)

    Google Scholar 

  24. Kusner, M.J., Loftus, J.R.: The long road to fairer algorithms. Nature (2020)

    Google Scholar 

  25. Larsson, S., Heintz, F.: Transparency in artificial intelligence. Internet Policy Rev. 9(2) (2020)

    Google Scholar 

  26. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of post-hoc interpretability. In: IJCAI-19, pp. 2801–2807. AAAI Press (2019)

    Google Scholar 

  27. McGrath, R., et al.: Interpretable credit application predictions with counterfactual explanations. In: NIPS Workshop on Challenges and Opportunities for AI in Financial Services (2018)

    Google Scholar 

  28. McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 186–197. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44527-7_17

    Chapter  Google Scholar 

  29. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  30. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  31. Muhammad, K.I., Lawlor, A., Smyth, B.: A live-user study of opinionated explanations for recommender systems. In: IUI, pp. 256–260 (2016)

    Google Scholar 

  32. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 344–350 (2020)

    Google Scholar 

  33. Ramon, Y., Martens, D., Provost, F., Evgeniou, T.: A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C. Adv. Data Anal. Classif. 14(4), 801–819 (2020). https://doi.org/10.1007/s11634-020-00418-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? In: Proceedings of the ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  35. Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: integrating different counterfactual assumptions in fairness. In: NIPS, pp. 6414–6423 (2017)

    Google Scholar 

  36. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv:2010.10596 (2020)

  37. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box. Harv. J. Law Tech. 31, 841 (2017)

    Google Scholar 

Download references

Acknowledgements

Supported by Science Foundation Ireland via the Insight SFI Research Centre for Data Analytics (12/RC/2289) and with the Department of Agriculture, Food and Marine via the VistaMilk SFI Research Centre (16/RC/3835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Smyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smyth, B., Keane, M.T. (2022). A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations. In: Keane, M.T., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2022. Lecture Notes in Computer Science(), vol 13405. Springer, Cham. https://doi.org/10.1007/978-3-031-14923-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14923-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14922-1

  • Online ISBN: 978-3-031-14923-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics