Abstract
This paper describes CONFident, a tool which is able to automatically prove and disprove confluence of variants of rewrite systems: term rewriting systems, conditional term rewriting systems (using join, oriented, or semi-equational semantics), and context-sensitive term rewriting systems. We introduce a new proof framework to generate proof trees by combining different techniques for proving confluence (including modular decompositions, checking joinability of (conditional) critical pairs, transformations, etc.). We also use external tools for proving termination and operational termination (mu-term), or feasibility (infChecker) and deducibility (Prover9).
Partially supported by grants PID2021-122830OB-C42 and PID2021-122830OB-C44 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and PROMETEO/2019/098.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
String rewriting systems (SRSs), which are rewrite systems where only monadic or constant function symbols are used, are also supported in CONFident.
- 2.
These are called \(\textsf{LH}_{\mu }\)-critical pairs, see [21, Section 4.3] for further motivation.
- 3.
The expression normal form is used in [3, Definition 2]. Although ‘normal form’ is not formally defined anywhere in [3], from the discussion in page 32 preceding [3, Definition 1], it is clear that ‘normal form’ means irreducible term. See [19] for a discussion about normal forms vs. irreducible terms in conditional rewriting.
- 4.
Termination Problems Data Base, see https://www.lri.fr/~marche/tpdb/.
- 5.
Confluence Problems database, see https://cops.uibk.ac.at/.
- 6.
Such CS-TRSs are called \(\mu \)-orthogonal in [21, Definition 35].
- 7.
- 8.
- 9.
Roughly speaking, a DCTRS is weakly left-linear if “variables that occur more than once in the lhs of a conditional rule and the rhs’s of conditions should not occur at all in lhs’s of conditions or the rhs of the conditional rule” [7, Definition 3.17].
- 10.
- 11.
- 12.
The TPDB format, see https://www.lri.fr/~marche/tpdb/format.html, introduced in 2003 for use in the International Termination Competition (TermComp https://termination-portal.org/wiki/Termination_Competition) can also be used in CONFident.
- 13.
References
Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4_7
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Dershowitz, N., Okada, M., Sivakumar, G.: Confluence of conditional rewrite systems. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 31–44. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19242-5_3
Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termination of membership equational programs. In: Heintze, N., Sestoft, P. (eds.) Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation 2004, Verona, Italy, 24–25 August 2004, pp. 147–158. ACM (2004). https://doi.org/10.1145/1014007.1014022
Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32275-7_21
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7
Gmeiner, K., Gramlich, B., Schernhammer, F.: On soundness conditions for unraveling deterministic conditional rewrite systems. In: Tiwari, A. (ed.) 23rd International Conference on Rewriting Techniques and Applications (RTA 2012), RTA 2012, Nagoya, Japan, 28 May–2 June 2012. LIPIcs, vol. 15, pp. 193–208. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.RTA.2012.193
Gmeiner, K., Nishida, N., Gramlich, B.: Proving confluence of conditional term rewriting systems via unravelings. In: 2nd International Workshop on Confluence, IWC 2013, pp. 35–39 (2013)
Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-V
Gramlich, B., Lucas, S.: Generalizing Newman’s lemma for left-linear rewrite systems. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 66–80. Springer, Heidelberg (2006). https://doi.org/10.1007/11805618_6
Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 416–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_27
Gutiérrez, R., Lucas, S.: mu-term: verify termination properties automatically (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 436–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_28
Gutiérrez, R., Lucas, S., Vítores, M.: Confluence of conditional rewriting in logic form. In: Bojańczy, M., Chekuri, C. (eds.) 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 213, pp. 44:1–44:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.44
Kirchner, C., Kirchner, H.: Equational logic and rewriting. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 255–282. Elsevier (2014). https://doi.org/10.1016/B978-0-444-51624-4.50006-X
Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174
Lucas, S.: Context-sensitive rewriting. ACM Comput. Surv. 53(4), 78:1–78:36 (2020). https://doi.org/10.1145/3397677
Lucas, S.: Applications and extensions of context-sensitive rewriting. J. Log. Algebr. Meth. Program. 121, 100680 (2021). https://doi.org/10.1016/j.jlamp.2021.100680
Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)
Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebr. Meth. Program. 85(1), 67–97 (2016). https://doi.org/10.1016/j.jlamp.2015.06.001
Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Meth. Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003
Lucas, S., Vítores, M., Gutiérrez, R.: Proving and disproving confluence of context-sensitive rewriting. J. Log. Algebr. Meth. Program. 126, 100749 (2022). https://doi.org/10.1016/j.jlamp.2022.100749
McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/
Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl. Algebra Eng. Commun. Comput. 5, 213–253 (1994). https://doi.org/10.1007/BF01190830
Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_24
Nishida, N.: CO3 (Version 2.2). In: Mirmram, S., Rocha, C. (eds.) Proceedings of the 10th International Workshop on Confluence, IWC 2021, p. 51 (2021)
Ohlebusch, E.: On the modularity of confluence of constructor-sharing term rewriting systems. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 261–275. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0017487
Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-3661-8
Raoult, J., Vuillemin, J.: Operational and semantic equivalence between recursive programs. J. ACM 27(4), 772–796 (1980). https://doi.org/10.1145/322217.322229
Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 81–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_6
Shintani, K., Hirokawa, N.: CoLL-Saigawa 1.6: a joint confluence tool. In: Mirmram, S., Rocha, C. (eds.) Proceedings of the 10th International Workshop on Confluence, IWC 2021, p. 51 (2021)
Sternagel, C.: CoCo 2020 participant: ConCon 1.10. In: Ayala-Rincón, M., Mirmram, S. (eds.) Proceedings of the 9th International Workshop on Confluence, IWC 2020, p. 65 (2020)
Sternagel, T.: Reliable confluence analysis of conditional term rewrite systems. Ph.D. thesis, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, August 2017
Suzuki, T., Middeldorp, A., Ida, T.: Level-confluence of conditional rewrite systems with extra variables in right-hand sides. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 179–193. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59200-8_56
Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting systems. J. ACM 34(1), 128–143 (1987). https://doi.org/10.1145/7531.7534
Vítores, M.: CONFident: a tool for confluence analysis of rewriting systems (master thesis). Master’s thesis, Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València, Spain, April 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gutiérrez, R., Vítores, M., Lucas, S. (2022). Confluence Framework: Proving Confluence with CONFident. In: Villanueva, A. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2022. Lecture Notes in Computer Science, vol 13474. Springer, Cham. https://doi.org/10.1007/978-3-031-16767-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16767-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16766-9
Online ISBN: 978-3-031-16767-6
eBook Packages: Computer ScienceComputer Science (R0)