Abstract
Stretch is a metric in the construction of spanning trees that measures the deviation in the distance between a pair of nodes in the tree compared to its shortest distance in the underlying graph. This paper proposes a silent self-stabilizing low stretch spanning tree construction protocol BuildTree , that is based on a Low Diameter Decomposition (LDD) technique. The LDD involves steps wherein the graph is decomposed into a small number of connected blocks or clusters, each having a low diameter value. The proposed BuildTree algorithm generates a spanning tree with an average stretch of \(n^{\mathcal {O}(1)}\) and converges to a correct configuration in \(\mathcal {O}(n+\varDelta \cdot \eta )\) rounds, where n, \(\varDelta \) and \(\eta \) is the number of nodes in the graph, the maximum size of a cluster and the number of clusters, respectively. To the best of our knowledge, this is the first known work of using self-stabilization in order to make low stretch tree constructions fault-tolerant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is clear that BuildTree protocol takes \(\mathcal {O}(n\cdot \log n)\) bits of space at each node for its execution.
References
Abraham, I., Neiman, O.: Using petal-decompositions to build a low stretch spanning tree. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 395–406 (2012)
Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)
Arora, A., Gouda, M., Herman, T.: Composite routing protocols. In: Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing 1990, pp. 70–78. IEEE (1990)
Awerbuch, B.: Complexity of network synchronization. J. ACM (JACM) 32(4), 804–823 (1985)
Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 184–193. IEEE (1996)
Becker, R., Emek, Y., Ghaffari, M., Lenzen, C.: Distributed algorithms for low stretch spanning trees. In: 33rd International Symposium on Distributed Computing (DISC 2019), vol. 146, p. 4 (2019)
Borradaile, G., Chambers, E.W., Eppstein, D., Maxwell, W., Nayyeri, A.: Low-stretch spanning trees of graphs with bounded width. arXiv preprint arXiv:2004.08375 (2020)
Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree networks. Distrib. Comput. 20(1), 3–19 (2007)
Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A self-stabilizing K-clustering algorithm using an arbitrary metric. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 602–614. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3_57
Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing spanning trees. Inf. Process. Lett. 39(3), 147–151 (1991)
Cournier, A.: A new polynomial silent stabilizing spanning-tree construction algorithm. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 141–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11476-2_12
Deo, N., Prabhu, G., Krishnamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Softw. (TOMS) 8(1), 26–42 (1982)
Devismes, S., Ilcinkas, D., Johnen, C.: Self-stabilizing disconnected components detection and rooted shortest-path tree maintenance in polynomial steps. arXiv preprint arXiv:1703.03315 (2017)
Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited. J. Parallel Distrib. Comput. 97, 11–23 (2016)
Dijkstra, E.W.: Self-stabilization in spite of distributed control. In: Dijkstra, E.W. (ed.) Selected Writings on Computing: A Personal Perspective, pp. 41–46. Springer, New York (1982). https://doi.org/10.1007/978-1-4612-5695-3_7
Ding, Y.: Fault tolerance in distributed systems using self-stabilization (2014)
Dolev, S.: Self-stabilization, March 2000 (2000)
Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Informatica 36(6), 447–462 (1999)
Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir, B.: Near-optimal distributed maximum flow. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pp. 81–90 (2015)
Ghosh, S.: Distributed Systems: An Algorithmic Approach. Chapman and Hall/CRC, Boca Raton (2014)
Gurjar, A., Peri, S., Sengupta, S.: Distributed and fault-tolerant construction of low stretch spanning tree. In: 2020 19th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 142–149. IEEE (2020)
Harvey, N.: Low-stretch trees. https://www.cs.ubc.ca/~nickhar/Cargese1.pdf. Accessed 19 Feb 2022
Huang, S.T., Chen, N.S.: A self-stabilizing algorithm for constructing breadth-first trees. Inf. Process. Lett. 41(2), 109–117 (1992)
Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 184–198. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45032-7_14
Kosowski, A., Kuszner, Ł.: A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidelberg (2006). https://doi.org/10.1007/11752578_10
Larsson, A., Tsigas, P.: Self-stabilizing (k,r)-clustering in wireless ad-hoc networks with multiple paths. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 79–82. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_6
Nguyen, M.H., Hà, M.H., Nguyen, D.N., et al.: Solving the k-dominating set problem on very large-scale networks. Comput. Soc. Netw. 7(1), 1–15 (2020)
Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5_58
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sengupta, S., Peri, S., Anjana, P.S. (2022). A Self-stabilizing Minimum Average Stretch Spanning Tree Construction. In: Koulali, MA., Mezini, M. (eds) Networked Systems. NETYS 2022. Lecture Notes in Computer Science, vol 13464. Springer, Cham. https://doi.org/10.1007/978-3-031-17436-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-17436-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17435-3
Online ISBN: 978-3-031-17436-0
eBook Packages: Computer ScienceComputer Science (R0)