Abstract
In this paper a time-invariant continuous linear system is considered with a real-valued impulse response function which is defined on bounded domain. A sample input-output cross-correlogram is taken as an estimator of the response function. The input processes are supposed to be zero-mean stationary Gaussian processes that can be represented as the truncated series of Fourier expansion. A criterion on the shape of the impulse response function is given. For this purpose, a theory of square-Gaussian stochastic processes is used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramovich, F., Pensky, M., Rozenholc, Y.: Laplace deconvolution with noisy observations. Electron. J. Stat. 7, 1094–1128 (2013)
Akaike, H.: On the statistical estimation of the frequence response function of a system having multiple input. Ann. Inst. Stat. Math. 17, 185–210 (1965)
Akaike, H.: On the use of non-Gaussian process in the identification of a linear dynamic system. Ann. Inst. Stat. Math. 18, 269–276 (1966)
Alquier, P., Gautier, E., Stoltz, G.: Inverse Problems and High-Dimensional Estimation. Springer, New York (2011)
Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis. Wiley, New York (1980)
Blazhievska, I.P.: Correlogram estimation of response functions of linear systems in scheme of some independent samples. Theory Stoch. Proc. 17(33), 16–27 (2011)
Buldygin, V.V., Blazhievska, I.P.: Asymptotic properties of cross-correlogram estimator for impulse response functions of linear system. Naukovi Visti NTUU “KPI” 4, 16–27 (2010) (in Ukrainian)
Buldygin, V.V., Kozachenko, Yu.V.: Metric Characterization of Random Variables and Random Processes. Amer. Math. Soc, Providence, RI (2000)
Buldygin, V.V., Fu, L.: On asymptotic normality of an estimation of unit impulse responses of linear system I, II. Theor. Probab. Math. Stat. 54, 3–17, 30–37 (1997)
Buldygin, V., Utzet, L., Zaiats, V.: Asymptotic normality of cross-correlogram estimators of the response function. Stat. Inference Stoch. Process. 7, 1–34 (2004)
Cardot, H., Johannes, J.: Thresholding projection estimators in functional linear models. J. Multivar. Anal. 101, 395–408 (2010)
Dashti, M., Stuart, A.M.: The Bayesian Approach to Inverse Problems. Springer, Handbook of Uncertainty Quantification (2017)
Delaigle, A., Hall, P., Meister, A.: On deconvolution with repeated measurements. Ann. Stat. 36, 665–685 (2008)
Efromovich, S., Kolchinskii, V.: On inverse problems with unknown operators. IEEE Transf. Inf. Theory 47, 2876–2894 (2001)
Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Monographs on Statistics and Applied Probability, vol. 66. Chapman & Hall, London (1996)
Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes. Dover Publications Inc., Mineola, New York (1996)
Gondenshluger, A., Pereverzev, S.: On adaptive inverse estimation of linear functionals in Hilbert scales. Bernoulli 9(5), 783–807 (2003)
Hannan, E., Deistler, M.: The Statistical Theory of Linear Systems. Wiley, New York (1988)
Ingster, Y., Suslina, I.: Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Springer, New York (2003)
Kozachenko, Yu., Moklyachuk, O.: Large deviation probabilities for square-Gaussian stochastic processes. Extremes 2(3), 269–293 (1999)
Kozachenko, Y., Moklyachuk, O.: Square-Gaussian stochastic processes. Theory Stoch. Process. 6(22), 3–4, 98–121 (2000)
Kozachenko, Yu., Pashko, A., Rozora, I.: Simulation of Stochastic Processes and Fields. Zadruga, Kyiv (2007).(in Ukrainian)
Kozachenko, Yu., Pogoriliak, O., Rozora, I., Tegza, A.: Simulation of Stochastic Processes with given Accuracy and Reliability. ISTE Press Ltd and Elsevier Ltd, London (2016)
Kozacenko, Yu., Rozora, I.: On cross-correlogram estimators of impulse response function. Theor. Probab. Math. Stat. 93, 79–91 (2016)
Kozacenko, Y., Rozora, I.: A criterion for testing hypothesis about impulse response function. Stat. Optim. Inf. Comput. 4, 214–232 (2016)
Kozachenko, Y., Rozora, I., Turchyn, Y.: On an expansion of random processes in series. Random Oper. Stoch. Equ. 15(1), 15–34 (2007)
Kozachenko, Y., Rozora, I., Turchyn, Y.: Properties of some random series. Commun. Stat. Theory Methods 40(19-20), 3672–3683 (2011)
Kozachenko, Yu., Stus, O.: Square-Gaussian random processes and estimators of covariance functions. Math. Commun. 3(1), 83–94 (1998)
Kozachenko, Yu., Troshki, V.: A criterion for testing hypotheses about the covariance function of a stationary Gaussian stochastic process. Modern Stoch. Theory Appl. 1(1), 139–149 (2014)
Marteau, C., Sapatinas, T.: A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection. Stat. Surv. 9, 253–297 (2015)
Meister, A.: Deconvolution Problems in Nonparametric Statistics (Lecture Notes in Statistics). Springer-Verlag, Berlin (2009)
Peng, S.-L., Chen, C.-M., Huang, C.-Y., Shih, C.-T., Huang, C.-W., Chiu, S.-C., Shen, W.-C.: Effects of hemodynamic response function selection on rat fMRI statistical analyses. Front. Neurosci. 13(400), 1–7 (2019). https://doi.org/10.3389/fnins.2019.00400
Pillonetto, G., Dinuzzo, F., Chen, T., de Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014)
Rozora, I.: Statistical hypothesis testing for the shape of impulse response function. Commun. Stat. Theory Methods 47(6), 1459–1474 (2018)
Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980)
The New Palgrave Dictionary of Economics. Macmillan Publishers Ltd, third edition, UK (2018)
Söderström, T., Stoica, P.: System Identification. Prentice-Hall, London (1989)
Tsybakov, A.: Introduction to Nonparametric Estimation. Springer Series in Statistics, Springer, New York (2009)
Wahba, G.: Spline Models for Observational Data, CBMSNSF Regional Conference Series in Applied Mathematics, vol 59. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kozachenko, Y., Rozora, I. (2022). On Statistical Properties of the Estimator of Impulse Response Function. In: Malyarenko, A., Ni, Y., Rančić, M., Silvestrov, S. (eds) Stochastic Processes, Statistical Methods, and Engineering Mathematics . SPAS 2019. Springer Proceedings in Mathematics & Statistics, vol 408. Springer, Cham. https://doi.org/10.1007/978-3-031-17820-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-17820-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17819-1
Online ISBN: 978-3-031-17820-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)