Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

IOWA Rough-Fuzzy Support Vector Data Description

  • Conference paper
  • First Online:
Information and Communication Technologies (TICEC 2022)

Abstract

Rough-Fuzzy Support Vector Data Description is a novel soft computing derivative of the classical Support Vector Data Description algorithm used in many real-world applications successfully. However, its current version treats all data points equally when constructing the classifier. If the data set contains outliers, they will substantially affect the decision boundary. To overcome this issue, we present a novel approach based on the induced ordered weighted average operator and linguistic quantifier functions to weigh data points depending on their closeness to the lower approximation of the target class. In this way, we determine the weights for the data points without using any external procedure. Our computational experiments emphasize the strength of the proposed approach underlining its potential for outlier detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This term is not to be confused with the well-known concept of membership as defined in fuzzy logic.

References

  1. Aggarwal, C.C.: Outlier Analysis. 2 edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3

  2. Bansal, R., Gaur, N., Singh, S.N.: Outlier detection: applications and techniques in data mining. In: 6th International Conference Cloud System and Big Data Engineering, pp. 373–377. IEEE (2016)

    Google Scholar 

  3. Bellinger, C., Sharma, S., Japkowicz, N.: One-class classification-From theory to practice: a case-study in radioactive threat detection. Expert Syst. Appl. 108, 223–232 (2018)

    Article  Google Scholar 

  4. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)

    MATH  Google Scholar 

  5. Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020)

    Article  Google Scholar 

  6. Bu, H.G., Wang, J., Huang, X.B.: Fabric defect detection based on multiple fractal features and support vector data description. Eng. Appl. Artif. Intell. 22(2), 224–235 (2009)

    Article  Google Scholar 

  7. Cha, M., Kim, J.S., Baek, J.G.: Density weighted support vector data description. Expert Syst. Appl. 41(7), 3343–3350 (2014)

    Article  Google Scholar 

  8. Csiszar, O.: Ordered weighted averaging operators: a short review. IEEE Syst. Man Cybern. Mag. 7(2), 4–12 (2021)

    Article  Google Scholar 

  9. Fan, Y., Li, P., Song, Z.: Grid-based fuzzy support vector data description. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1273–1279. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_189

    Chapter  Google Scholar 

  10. Hu, Y., Liu, J.N., Wang, Y., Lai, L.: A weighted support vector data description based on rough neighborhood approximation. In: IEEE 12th International Conference on Data Mining Workshops, pp. 635–642. IEEE (2012)

    Google Scholar 

  11. Lee, S.W., Park, J., Lee, S.W.: Low resolution face recognition based on support vector data description. Pattern Recogn. 39(9), 1809–1812 (2006)

    Article  Google Scholar 

  12. Li, D., Xu, X., Wang, Z., Cao, C., Wang, M.: Boundary-based Fuzzy-SVDD for one-class classification. Int. J. Intell. Syst. 37(3), 2266–2292 (2022)

    Article  Google Scholar 

  13. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  14. Lin, M., Xu, W., Lin, Z., Chen, R.: Determine OWA operator weights using kernel density estimation. Econ. Research-Ekonomska istraživanja 33(1), 1441–1464 (2020)

    Article  Google Scholar 

  15. Liu, Y., Huang, H.: Fuzzy support vector machines for pattern recognition and data mining. Int. J. Fuzzy Syst. 4(3), 826–835 (2002)

    MathSciNet  Google Scholar 

  16. Luukka, P., Kurama, O.: Similarity classifier with ordered weighted averaging operators. Expert Syst. Appl. 40(4), 995–1002 (2013)

    Article  Google Scholar 

  17. Maldonado, S., Merigó, J., Miranda, J.: Redefining support vector machines with the ordered weighted average. Knowl. Based Syst. 148, 41–46 (2018)

    Article  Google Scholar 

  18. Maldonado, S., Merigó, J., Miranda, J.: IOWA-SVM: a density-based weighting strategy for SVM classification via OWA operators. IEEE Trans. Fuzzy Syst. 28(9), 2143–2150 (2019)

    Article  Google Scholar 

  19. Merigó, J.M., Gil-Lafuente, A.M.: The induced generalized OWA operator. Inf. Sci. 179(6), 729–741 (2009)

    Article  MathSciNet  Google Scholar 

  20. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, vol. 9. Springer Science & Business Media (1991). https://doi.org/10.1007/978-94-011-3534-4

  21. Saltos, R., Weber, R.: Rough-fuzzy support vector domain description for outlier detection. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015)

    Google Scholar 

  22. Saltos, R., Weber, R.: A rough-fuzzy approach for support vector clustering. Inf. Sci. 339, 353–368 (2016)

    Article  Google Scholar 

  23. Schölkopf, B.: Learning with Kernels. MIT Press (2002). https://doi.org/10.1198/jasa.2003.s269

  24. Singh, K., Upadhyaya, S.: Outlier detection: applications and techniques. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 307 (2012)

    Google Scholar 

  25. Smiti, A.: A critical overview of outlier detection methods. Comput. Sci. Rev. 38, 100306 (2020)

    Google Scholar 

  26. Ranga Suri, N.N.R., Murty M, N., Athithan, G.: Outlier Detection: Techniques and Applications. ISRL, vol. 155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05127-3

    Book  Google Scholar 

  27. Tax, D.M., Duin, R.P.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)

    Article  Google Scholar 

  28. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  Google Scholar 

  29. Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)

    Article  Google Scholar 

  30. Wang, S., Yu, J., Lapira, E., Lee, J.: A modified support vector data description based novelty detection approach for machinery components. Appl. Soft Comput. 13(2), 1193–1205 (2013)

    Article  Google Scholar 

  31. Xu, Z., Da, Q.L.: An overview of operators for aggregating information. Int. J. Intell. Syst. 18(9), 953–969 (2003)

    Article  Google Scholar 

  32. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  Google Scholar 

  33. Yager, R.R.: Induced aggregation operators. Fuzzy Sets Spystems 137(1), 59–69 (2003)

    Article  MathSciNet  Google Scholar 

  34. Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 29(2), 141–150 (1999)

    Google Scholar 

  35. Yager, R.R., Kacprzyk, J., Beliakov, G.: Recent developments in the ordered weighted averaging operators: theory and practice, vol. 265. Springer (2011). https://doi.org/10.1007/978-3-642-17910-5

  36. Zhang, Y., Chi, Z.X., Li, K.Q.: Fuzzy multi-class classifier based on support vector data description and improved PCM. Expert Syst. Appl. 36(5), 8714–8718 (2009)

    Article  Google Scholar 

  37. Zheng, E.-H., Yang, M., Li, P., Song, Z.-H.: Fuzzy support vector clustering. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1050–1056. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_154

    Chapter  Google Scholar 

Download references

Acknowledgements

Both authors acknowledge financial support from FONDECYT Chile (1181036 and 1221562). The second author received financial support from ANID PIA/BASAL AFB180003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Saltos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saltos, R., Weber, R. (2022). IOWA Rough-Fuzzy Support Vector Data Description. In: Herrera-Tapia, J., Rodriguez-Morales, G., Fonseca C., E.R., Berrezueta-Guzman, S. (eds) Information and Communication Technologies. TICEC 2022. Communications in Computer and Information Science, vol 1648. Springer, Cham. https://doi.org/10.1007/978-3-031-18272-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18272-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18271-6

  • Online ISBN: 978-3-031-18272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics