Abstract
Rough-Fuzzy Support Vector Data Description is a novel soft computing derivative of the classical Support Vector Data Description algorithm used in many real-world applications successfully. However, its current version treats all data points equally when constructing the classifier. If the data set contains outliers, they will substantially affect the decision boundary. To overcome this issue, we present a novel approach based on the induced ordered weighted average operator and linguistic quantifier functions to weigh data points depending on their closeness to the lower approximation of the target class. In this way, we determine the weights for the data points without using any external procedure. Our computational experiments emphasize the strength of the proposed approach underlining its potential for outlier detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This term is not to be confused with the well-known concept of membership as defined in fuzzy logic.
References
Aggarwal, C.C.: Outlier Analysis. 2 edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3
Bansal, R., Gaur, N., Singh, S.N.: Outlier detection: applications and techniques in data mining. In: 6th International Conference Cloud System and Big Data Engineering, pp. 373–377. IEEE (2016)
Bellinger, C., Sharma, S., Japkowicz, N.: One-class classification-From theory to practice: a case-study in radioactive threat detection. Expert Syst. Appl. 108, 223–232 (2018)
Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)
Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020)
Bu, H.G., Wang, J., Huang, X.B.: Fabric defect detection based on multiple fractal features and support vector data description. Eng. Appl. Artif. Intell. 22(2), 224–235 (2009)
Cha, M., Kim, J.S., Baek, J.G.: Density weighted support vector data description. Expert Syst. Appl. 41(7), 3343–3350 (2014)
Csiszar, O.: Ordered weighted averaging operators: a short review. IEEE Syst. Man Cybern. Mag. 7(2), 4–12 (2021)
Fan, Y., Li, P., Song, Z.: Grid-based fuzzy support vector data description. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1273–1279. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_189
Hu, Y., Liu, J.N., Wang, Y., Lai, L.: A weighted support vector data description based on rough neighborhood approximation. In: IEEE 12th International Conference on Data Mining Workshops, pp. 635–642. IEEE (2012)
Lee, S.W., Park, J., Lee, S.W.: Low resolution face recognition based on support vector data description. Pattern Recogn. 39(9), 1809–1812 (2006)
Li, D., Xu, X., Wang, Z., Cao, C., Wang, M.: Boundary-based Fuzzy-SVDD for one-class classification. Int. J. Intell. Syst. 37(3), 2266–2292 (2022)
Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)
Lin, M., Xu, W., Lin, Z., Chen, R.: Determine OWA operator weights using kernel density estimation. Econ. Research-Ekonomska istraživanja 33(1), 1441–1464 (2020)
Liu, Y., Huang, H.: Fuzzy support vector machines for pattern recognition and data mining. Int. J. Fuzzy Syst. 4(3), 826–835 (2002)
Luukka, P., Kurama, O.: Similarity classifier with ordered weighted averaging operators. Expert Syst. Appl. 40(4), 995–1002 (2013)
Maldonado, S., Merigó, J., Miranda, J.: Redefining support vector machines with the ordered weighted average. Knowl. Based Syst. 148, 41–46 (2018)
Maldonado, S., Merigó, J., Miranda, J.: IOWA-SVM: a density-based weighting strategy for SVM classification via OWA operators. IEEE Trans. Fuzzy Syst. 28(9), 2143–2150 (2019)
Merigó, J.M., Gil-Lafuente, A.M.: The induced generalized OWA operator. Inf. Sci. 179(6), 729–741 (2009)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, vol. 9. Springer Science & Business Media (1991). https://doi.org/10.1007/978-94-011-3534-4
Saltos, R., Weber, R.: Rough-fuzzy support vector domain description for outlier detection. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2015)
Saltos, R., Weber, R.: A rough-fuzzy approach for support vector clustering. Inf. Sci. 339, 353–368 (2016)
Schölkopf, B.: Learning with Kernels. MIT Press (2002). https://doi.org/10.1198/jasa.2003.s269
Singh, K., Upadhyaya, S.: Outlier detection: applications and techniques. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 307 (2012)
Smiti, A.: A critical overview of outlier detection methods. Comput. Sci. Rev. 38, 100306 (2020)
Ranga Suri, N.N.R., Murty M, N., Athithan, G.: Outlier Detection: Techniques and Applications. ISRL, vol. 155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05127-3
Tax, D.M., Duin, R.P.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)
Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)
Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)
Wang, S., Yu, J., Lapira, E., Lee, J.: A modified support vector data description based novelty detection approach for machinery components. Appl. Soft Comput. 13(2), 1193–1205 (2013)
Xu, Z., Da, Q.L.: An overview of operators for aggregating information. Int. J. Intell. Syst. 18(9), 953–969 (2003)
Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)
Yager, R.R.: Induced aggregation operators. Fuzzy Sets Spystems 137(1), 59–69 (2003)
Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 29(2), 141–150 (1999)
Yager, R.R., Kacprzyk, J., Beliakov, G.: Recent developments in the ordered weighted averaging operators: theory and practice, vol. 265. Springer (2011). https://doi.org/10.1007/978-3-642-17910-5
Zhang, Y., Chi, Z.X., Li, K.Q.: Fuzzy multi-class classifier based on support vector data description and improved PCM. Expert Syst. Appl. 36(5), 8714–8718 (2009)
Zheng, E.-H., Yang, M., Li, P., Song, Z.-H.: Fuzzy support vector clustering. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1050–1056. Springer, Heidelberg (2006). https://doi.org/10.1007/11759966_154
Acknowledgements
Both authors acknowledge financial support from FONDECYT Chile (1181036 and 1221562). The second author received financial support from ANID PIA/BASAL AFB180003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Saltos, R., Weber, R. (2022). IOWA Rough-Fuzzy Support Vector Data Description. In: Herrera-Tapia, J., Rodriguez-Morales, G., Fonseca C., E.R., Berrezueta-Guzman, S. (eds) Information and Communication Technologies. TICEC 2022. Communications in Computer and Information Science, vol 1648. Springer, Cham. https://doi.org/10.1007/978-3-031-18272-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-18272-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18271-6
Online ISBN: 978-3-031-18272-3
eBook Packages: Computer ScienceComputer Science (R0)