Abstract
In the present paper, we propose a general logical approach for reasoning about probability functions, belief functions, lower probabilities and the corresponding duals. The logical setting we consider combines the modal logic S5, Łukasiewicz logic and an additional modality P that applied to boolean formulas formalises probability functions. The modality P together with an S5 modal \(\Box \) provides a language rich enough to characterise probability, belief and lower probability theories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of measures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 68(3), 403–414 (1985)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)
Castaño, D., Cimadamore, C., Varela, J.P.D., Rueda, L.: Completeness for monadic fuzzy logics via functional algebras. Fuzzy Sets Syst. 407, 161–174 (2021)
Chang, C.C.: A new proof of the completeness of the lukasiewicz axioms. Trans. Am. Math. Soc. 95(1), 74–80 (1959)
Flaminio, T., Godo, L., Marchioni E.: Reasoning about uncertainty of fuzzy events: an overview. In: Understanding Vagueness - Logical, Philosophical, and Linguistic Perspectives, Cintula, P., et al. (Eds.), College Publications, pp. 367–400 (2011)
Godo, L., Esteva, F., Hájek, P.: Reasoning about probability using fuzzy logic. Neural Netw. World 10, 811–824 (2000)
Godo, L., Hájek, P., Esteva, F.: A fuzzy modal logic for belief functions. Fundam. Inf. 57(2–4), 127–146 (2003)
Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Heidelrberg (1998). https://doi.org/10.1007/978-94-011-5300-3
Hájek, P.: On fuzzy modal logics s5 (c). Fuzzy Sets Syst. 161(18), 2389–2396 (2010)
Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. Inst. Compu. Sci. (ICS) (1995)
Halpern, J.Y.: Reasoning About Uncertainty. MIT press, Cambridge (2003)
Marchioni, E.: Uncertainty as a modality over t-norm based logics. In: EUSFLAT Conference, vol. 1, pp. 169–176 (2007)
Marchioni, E.: Representing upper probability measures over rational Lukasiewicz logic. Mathware Soft Comput. 15(2), 159–174 (2008)
Mundici, D.: Advanced Łukasiewicz Calculus and MV-Algebras, vol. 35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0840-2
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1975)
Smith, C.: Consistency in statistical inference and decision. J. Royal Stat. Soc. Series B (Methodological) 23(1), 1–37 (1961)
Acknowledgements
The authors thank the anonymous referees for their comments and suggestions. Corsi and Hosni acknowledge funding by the Department of Philosophy “Piero Martinetti” of the University of Milan under the Project “Departments of Excellence 2018–2022” awarded by the Ministry of Education, University and Research (MIUR). Flaminio acknowledges partial support by the Spanish project PID2019-111544GB-C21 and by the MOSAIC project (EU H2020-MSCA-RISE-2020 Project 101007627). Hosni also acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, grant LA 4093/3-1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Corsi, E.A., Flaminio, T., Hosni, H. (2022). Towards a Unified View on Logics for Uncertainty. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-18843-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18842-8
Online ISBN: 978-3-031-18843-5
eBook Packages: Computer ScienceComputer Science (R0)