Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards a Unified View on Logics for Uncertainty

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2022)

Abstract

In the present paper, we propose a general logical approach for reasoning about probability functions, belief functions, lower probabilities and the corresponding duals. The logical setting we consider combines the modal logic S5, Łukasiewicz logic and an additional modality P that applied to boolean formulas formalises probability functions. The modality P together with an S5 modal \(\Box \) provides a language rich enough to characterise probability, belief and lower probability theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of measures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 68(3), 403–414 (1985)

    Article  MathSciNet  Google Scholar 

  2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  3. Castaño, D., Cimadamore, C., Varela, J.P.D., Rueda, L.: Completeness for monadic fuzzy logics via functional algebras. Fuzzy Sets Syst. 407, 161–174 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chang, C.C.: A new proof of the completeness of the lukasiewicz axioms. Trans. Am. Math. Soc. 95(1), 74–80 (1959)

    MATH  Google Scholar 

  5. Flaminio, T., Godo, L., Marchioni E.: Reasoning about uncertainty of fuzzy events: an overview. In: Understanding Vagueness - Logical, Philosophical, and Linguistic Perspectives, Cintula, P., et al. (Eds.), College Publications, pp. 367–400 (2011)

    Google Scholar 

  6. Godo, L., Esteva, F., Hájek, P.: Reasoning about probability using fuzzy logic. Neural Netw. World 10, 811–824 (2000)

    Google Scholar 

  7. Godo, L., Hájek, P., Esteva, F.: A fuzzy modal logic for belief functions. Fundam. Inf. 57(2–4), 127–146 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Heidelrberg (1998). https://doi.org/10.1007/978-94-011-5300-3

  9. Hájek, P.: On fuzzy modal logics s5 (c). Fuzzy Sets Syst. 161(18), 2389–2396 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. Inst. Compu. Sci. (ICS) (1995)

    Google Scholar 

  11. Halpern, J.Y.: Reasoning About Uncertainty. MIT press, Cambridge (2003)

    MATH  Google Scholar 

  12. Marchioni, E.: Uncertainty as a modality over t-norm based logics. In: EUSFLAT Conference, vol. 1, pp. 169–176 (2007)

    Google Scholar 

  13. Marchioni, E.: Representing upper probability measures over rational Lukasiewicz logic. Mathware Soft Comput. 15(2), 159–174 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Mundici, D.: Advanced Łukasiewicz Calculus and MV-Algebras, vol. 35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-94-007-0840-2

  15. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  16. Smith, C.: Consistency in statistical inference and decision. J. Royal Stat. Soc. Series B (Methodological) 23(1), 1–37 (1961)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their comments and suggestions. Corsi and Hosni acknowledge funding by the Department of Philosophy “Piero Martinetti” of the University of Milan under the Project “Departments of Excellence 2018–2022” awarded by the Ministry of Education, University and Research (MIUR). Flaminio acknowledges partial support by the Spanish project PID2019-111544GB-C21 and by the MOSAIC project (EU H2020-MSCA-RISE-2020 Project 101007627). Hosni also acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, grant LA 4093/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Anna Corsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corsi, E.A., Flaminio, T., Hosni, H. (2022). Towards a Unified View on Logics for Uncertainty. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18843-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18842-8

  • Online ISBN: 978-3-031-18843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics