Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Binding in the Spatial Logics for Closure Spaces

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles (ISoLA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13701))

Included in the following conference series:

Abstract

We present two different extensions of the spatial logic for closure spaces (SLCS), and its spatio-temporal variant (\(\tau \) SLCS), with spatial quantification operators. The first concerns the existential quantification on individual points of a space. The second concerns the quantification on sets of points. The latter amounts to a form of quantification over atomic propositions, thus without the full power of second order logic. The spatial quantification operators are useful for reasoning about the existence of particular spatial objects in a space, their spatial relation with respect to other spatial objects, and, in the spatio-temporal setting, to reason about the dynamic evolution of such spatial objects in time and space, including reasoning about newly introduced items. In this preliminary study we illustrate the expressiveness of the operators by means of several small, but representative, examples.

Research partially supported by the MIUR PRIN 2017FTXR7S IT-MaTTerS. The authors are listed in alphabetical order; they contributed to this work equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The disjoint union \((X_1,\mathcal {C}_1) + (X_2,\mathcal {C}_2)\) of closure spaces \((X_1,\mathcal {C}_1)\) and \((X_2,\mathcal {C}_2)\) is the closure space \((X,\mathcal {C})\) whose set of points X is the disjoint union \(X_1+X_2\triangleq \{(x,1) \,|\, x \in X_1\} \cup \{(x,2) \,|\, x \in X_2\}\) while, for \(A \subseteq X_1+X_2\) we define \(\mathcal {C}(A) \triangleq \{(x,1) \,|\, x \in A_1\} \cup \{(x,2) \,|\, x \in A_2\}\) with \(A_j \triangleq \{x \,|\, (x,j)\in A\}\) for \(j=1,2\).

  2. 2.

    There are a few exceptions to this view of past-tense operators, e.g. [26, 32].

  3. 3.

    In [12, 13], the stronger condition \(X_s = X_{s'}\) for all \(s,s' \in S\) was required.

  4. 4.

    For the sake of notational simplicity, we refrain from giving an explicit syntactic characterisation of assertions here.

  5. 5.

    In line with [19], we are not interested in the algorithm(s) used for deciding the winner of the game. We are only interested in providing a representation for the configurations of the game and investigating properties of any such configuration, as well as of the whole game, that can be expressed using the extensions of SLCS we discuss in the present paper.

References

  1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71998-4_1

    Chapter  Google Scholar 

  2. Bednarczyk, B., Demri, S.: Why propositional quantification makes modal logics on trees robustly hard? In: LICS 2019, pp. 1–13. IEEE (2019)

    Google Scholar 

  3. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N., Semini, L. (eds.) FormaliSE@ICSE 2021, pp. 1–12. IEEE (2021)

    Google Scholar 

  4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865, pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5_7

    Chapter  Google Scholar 

  5. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_16

    Chapter  Google Scholar 

  6. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_5

    Chapter  Google Scholar 

  7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.: Geometric model checking of continuous space. CoRR arXiv:abs/2105.06194 (2021)

  8. Bull, R.A.: On modal logic with propositional quantifiers. J. Symb. Log. 34(2), 257–263 (1969)

    Article  Google Scholar 

  9. Buonamici, F.B., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf. 22(2), 195–217 (2020)

    Article  Google Scholar 

  10. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0_12

    Chapter  Google Scholar 

  11. Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M.: Towards model checking video streams using VoxLogicA on GPU’s. In: DataMod 2021. LNCS, Springer, Cham (2022, to appear)

    Google Scholar 

  12. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model checking of vehicular movement in public transport systems. Int. J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018)

    Article  Google Scholar 

  13. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49224-6_24

    Chapter  Google Scholar 

  14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_18

    Chapter  Google Scholar 

  15. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. J. Log. Methods Comput. Sci. 12(4) (2016)

    Google Scholar 

  16. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for statistical spatio-temporal model checking of bike sharing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_46

    Chapter  Google Scholar 

  17. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: On bisimilarities for closure spaces - preliminary version. CoRR arXiv:abs/2105.06690 (2021)

  18. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3) (2009)

    Google Scholar 

  19. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-order \(\mu \)-calculus. Fund. Inform. 118(1–2), 177–205 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Galton, A.: A generalized topological view of motion in discrete space. Theoret. Comput. Sci. 305(1–3), 111–134 (2003)

    Article  MathSciNet  Google Scholar 

  21. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)

    Article  Google Scholar 

  22. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel spatial-temporal logic and its applications to networked systems. In: Girard, A., Sankaranarayanan, S. (eds.) HSCC 2015, pp. 189–198. ACM (2015)

    Google Scholar 

  23. Holliday, W.H.: A note on algebraic semantics for S5 with propositional quantifiers. Notre Dame J. Formal Log. 60(2), 321–332 (2017)

    MathSciNet  Google Scholar 

  24. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)

    Article  MathSciNet  Google Scholar 

  25. Kröger, F., Merz, S.: First-order linear temporal logic. In: Kröger, F., Merz, S. (eds.) Temporal Logic and State Systems, pp. 153–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68635-4_5

    Chapter  MATH  Google Scholar 

  26. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. J. Logic Lang. Inform. 6(4), 403–425 (1997)

    Article  MathSciNet  Google Scholar 

  27. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR arXiv:abs/2105.08708 (2021)

  28. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties with SSTL. J. Log. Methods Comput. Sci. 14(4) (2018)

    Google Scholar 

  29. Patthak, A., Bhattacharya, I., Dasgupta, A., Dasgupta, P., Chakrabarti, P.: Quantified computation tree logic. Inf. Process. Lett. 82(3), 123–129 (2002)

    Article  MathSciNet  Google Scholar 

  30. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_8

    Chapter  Google Scholar 

  31. Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_12

    Chapter  Google Scholar 

  32. Stirling, C.: Modal and temporal logics. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp. 477–563. Oxford University Press, Oxford (1993)

    Google Scholar 

  33. Čech, E.: Topological spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp. 233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience Publishers, Wiley, Prague/London-New York-Sydney (1966). Revised edition by Z. Frolíc, M. Katětov. Scientific editor, V. Pták. Editor of the English translation, C.O. Junge. MR0211373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Massink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bussi, L., Ciancia, V., Gadducci, F., Latella, D., Massink, M. (2022). On Binding in the Spatial Logics for Closure Spaces. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles. ISoLA 2022. Lecture Notes in Computer Science, vol 13701. Springer, Cham. https://doi.org/10.1007/978-3-031-19849-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19849-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19848-9

  • Online ISBN: 978-3-031-19849-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics