Abstract
We present StyleBabel, a unique open access dataset of natural language captions and free-form tags describing the artistic style of over 135K digital artworks, collected via a novel participatory method from experts studying at specialist art and design schools. StyleBabel was collected via an iterative method, inspired by ‘Grounded Theory’: a qualitative approach that enables annotation while co-evolving a shared language for fine-grained artistic style attribute description. We demonstrate several downstream tasks for StyleBabel, adapting the recent ALADIN architecture for fine-grained style similarity, to train cross-modal embeddings for: 1) free-form tag generation; 2) natural language description of artistic style; 3) fine-grained text search of style. To do so, we extend ALADIN with recent advances in Visual Transformer (ViT) and cross-modal representation learning, achieving a state of the art accuracy in fine-grained style retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is released for open access (CC-BY 4.0).
- 2.
- 3.
We redacted a minimal number of adult-themed images due to ethical considerations.
- 4.
References
von Ahn, L., Dabbish, L.A.: ESP: labeling images with a computer game, pp. 91–98 (2005)
Achlioptas, P., Ovsjanikov, M., Haydarov, K., Elhoseiny, M., Guibas, L.: Artemis: affective language for visual art. In: Proceedings of CVPR (2021)
Bai, Z., Nakashima, Y., Garcia, N.: Explain me the painting: multi-topic knowledgeable art description generation. CoRR, arXiv:2109.05743 (2021)
Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. In: Proceedings of ACM SIGGRAPH (2015)
Bianco, S., Celona, L., Napoletano, P., Schettini, R.: Predicting image aesthetics with deep learning. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 117–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_11
Kathy, C.: Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. Sage, London (2006)
Cetinic, E., Grgic, S.: Automated painter recognition based on image feature extraction. In: Proceedings of ELMAR (2013)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)
Collomosse, J., Bui, T., Wilber, M., Fang, C., Jin, H.: Sketching with style: visual search with sketches and aesthetic context. In: Proceedings of ICCV (2017)
Cornia, M., Stefanini, M., Baraldi, L., Cucchiara, R.: Meshed-memory transformer for image captioning. arXiv preprint arXiv:1912.08226 (2020)
Desai, K., Johnson, J.: Virtex: learning visual representations from textual annotations. CoRR, arXiv:2006.06666 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Farhadi, A., et al.: Every picture tells a story: generating sentences from images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 15–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_2
Eric, F.: Art History and its Methods: A Critical Anthology. Phaidon, London (1995)
Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)
Garcia, N., Vogiatzis, G.: How to read paintings: semantic art understanding with multi-modal retrieval. CoRR, arXiv:1810.09617 (2018)
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)
Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. arXiv preprint arXiv:1705.06830 (2017)
Ghosal, K., Rana, A., Smolic, A.: Aesthetic image captioning from weakly-labelled photographs. CoRR, arXiv:1908.11310 (2019)
Huang, L., Wang, W., Chen, J., Wei, X.: Attention on attention for image captioning. CoRR, arXiv:1908.06954 (2019)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of ICCV (2017)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karayev, S., et al.: Recognizing image style. In: Proceedings of BMVC (2014)
Kulkarni, G., et al.: Babytalk: understanding and generating simple image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2891–2903 (2013)
Lavie, A., Agarwal, A.: Meteor: an automatic metric for MT evaluation with high levels of correlation with human judgments, pp. 228–231 (2007)
Xu, L., Meroño-Peñuela, A., Huang, Z., Harmelen, F.V.: An ontology model for narrative image annotation in the field of cultural heritage. In: WHiSe@ISWC (2017)
Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. arXiv preprint arXiv:2004.06165 (2020)
Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.: Universal style transfer via feature transforms. In: Proceedings of NIPS (2017)
Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries, p. 10 (2004)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. CoRR, arXiv:1405.0312 (2014)
Pang, K., Yang, Y., Hospedales, T.M., Xiang, T., Song, Y.: Solving mixed-modal jigsaw puzzle for fine-grained sketch-based image retrieval. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 10344–10352. IEEE Computer Society (2020)
Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, USA, ACL 2002, pp. 311–318. Association for Computational Linguistics (2002)
Park, T., et al.: Swapping autoencoder for deep image manipulation. In: Proceedings of ECCV (2020)
Pinotti, A.: Formalism and the History of Style, pp. 75–90. Brill, Leiden (2012)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Ramesh, A., et al.: Zero-shot text-to-image generatio. arXiv preprint arXiv:2102.12092 (2021)
Ramesh, A., et al.: Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, arXiv:1506.01497 (2015)
Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: Proceedings of GCPR (2016)
Ruta, D., et al.: Aladin: all layer adaptive instance normalization for fine-grained style similarity. arXiv preprint arXiv:2103.09776 (2021)
Saleh, B., Elgammal, A.: Large-scale classification of fine-art paintings: learning the right metric on the right feature (2015)
Shamir, L., Macura, T., Orlov, N., Eckley, D.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. IEEE Trans. Appl. Percept. (2010)
Simondsen, J., Roberton, T.: Routledge International Handbook of Participatory Design. Routledge, London (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605 (2021)
Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-forward synthesis of textures and stylized images. In: Proceedings of ICML (2016)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. CoRR, arXiv:1411.5726 (2014)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. arXiv preprint arXiv:1411.4555 (2015)
Wang, X., Oxholm, G., Zhang, D., Wang, Y.-F.: Multimodal transfer: a hierarchical deep convolutional neural network for fast artistic style transfer. In: Proceedings of CVPR (2017)
Wei, X.-S., Luo, J.-H., Wu, J., Zhou, Z.-H.: Selective convolutional descriptor aggregation for fine-grained image retrieval. arXiv preprint arXiv:1604.04994 (2017)
Wilber, M.J., Fang, C., Jin, H., Hertzmann, A., Collomosse, J., Belongie, S.: Bam! the behance artistic media dataset for recognition beyond photography. arXiv preprint arXiv:1704.08614 (2017)
Xu, L., Wang, X.: Semantic description of cultural digital images: using a hierarchical model and controlled vocabulary. D Lib Mag. 21(5/6) (2015)
Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: CVPR 2011, pp. 1577–1584 (2011)
Zhang, P., et al.: Vinvl: revisiting visual representations in vision-language models. arXiv preprint arXiv:2101.00529 (2021)
Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J.J., Gao, J.: Unified vision-language pre-training for image captioning and VQA. arXiv preprint arXiv:1909.11059 (2019)
Zujovic, J., Gandy, L., Friedman, S., Pardo, B., Pappas, T.N.: Classifying paintings by artistic genre: an analysis of features and classifiers. In: Proceedings of IEEE Workshop on Multimedia Signal Processing (MMSP) (2009)
Acknowledgement
We would like to thank Thomas Gittings, Tu Bui, Alex Black, and Dipu Manandhar for their time, patience, and hard work, assisting with invigilating and managing the group annotation stages during data collection and annotation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ruta, D. et al. (2022). StyleBabel: Artistic Style Tagging and Captioning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)