Abstract
Proofs of Retrievability (PoR) protocols ensure that a client can fully retrieve a large outsourced file from an untrusted server. Good PoRs should have low communication complexity, small storage overhead and clear security guarantees with tight security bounds. The focus of this work is to design good PoR schemes with simple security proofs. To this end, we propose a framework for the design of secure and efficient PoR schemes that is based on Locally Correctable Codes, and whose security is phrased in the Constructive Cryptography model by Maurer. We give a first instantiation of our framework using the high rate lifted codes introduced by Guo et al. This yields an infinite family of good PoRs. We assert their security by solving a finite geometry problem, giving an explicit formula for the probability of an adversary to fool the client. Moreover, we show that the security of a PoR of Lavauzelle and Levy-dit-Vehel was overestimated and propose new secure parameters for it. Finally, using the local correctability properties of Tanner codes, we get another instantiation of our framework and derive an analogous formula for the success probability of the audit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Following the terminology of [1].
References
Badertscher, C., Maurer, U.: Composable and robust outsourced storage. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 354–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_19
Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementation. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, New York, NY, USA, pp. 43–54. ACM (2009). https://doi.org/10.1145/1655008.1655015
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science (2001). https://doi.org/10.1109/sfcs.2001.959888
Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_8
Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, New York, NY, USA, pp. 529–540. ACM (2013). https://doi.org/10.1145/2422436.2422494
Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_46
Jost, D., Maurer, U.: Overcoming impossibility results in composable security using interval-wise guarantees. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 33–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_2
Juels, A., Kaliski, B.S., Jr.: PORs: proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, New York, NY, USA, pp. 584–597. ACM (2007). https://doi.org/10.1145/1315245.1315317
Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, New York, NY, USA, pp. 80–86. ACM (2000). https://doi.org/10.1145/335305.335315
Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC 2011, New York, NY, USA, pp. 167–176. ACM (2011). https://doi.org/10.1145/1993636.1993660
Lavauzelle, J., Levy-Dit-Vehel, F.: New proofs of retrievability using locally decodable codes. In: International Symposium on Information Theory ISIT 2016, Barcelona, Spain, pp. 1809–1813 (2016). https://doi.org/10.1109/ISIT.2016.7541611
Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3
Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science. Tsinghua University Press (2011)
Paterson, M., Stinson, D., Upadhyay, J.: A coding theory foundation for the analysis of general unconditionally secure proof-of-retrievability schemes for cloud storage. J. Math. Cryptol. 7(3), 183–216 (2013). https://doi.org/10.1515/jmc-2013-5002
Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_7
Tanner, R.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981). https://doi.org/10.1109/TIT.1981.1056404
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Levy-dit-Vehel, F., Roméas, M. (2022). A Framework for the Design of Secure and Efficient Proofs of Retrievability. In: Nitaj, A., Zkik, K. (eds) Cryptography, Codes and Cyber Security. I4CS 2022. Communications in Computer and Information Science, vol 1747. Springer, Cham. https://doi.org/10.1007/978-3-031-23201-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-23201-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23200-8
Online ISBN: 978-3-031-23201-5
eBook Packages: Computer ScienceComputer Science (R0)