Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for the Design of Secure and Efficient Proofs of Retrievability

  • Conference paper
  • First Online:
Cryptography, Codes and Cyber Security (I4CS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1747))

Included in the following conference series:

Abstract

Proofs of Retrievability (PoR) protocols ensure that a client can fully retrieve a large outsourced file from an untrusted server. Good PoRs should have low communication complexity, small storage overhead and clear security guarantees with tight security bounds. The focus of this work is to design good PoR schemes with simple security proofs. To this end, we propose a framework for the design of secure and efficient PoR schemes that is based on Locally Correctable Codes, and whose security is phrased in the Constructive Cryptography model by Maurer. We give a first instantiation of our framework using the high rate lifted codes introduced by Guo et al. This yields an infinite family of good PoRs. We assert their security by solving a finite geometry problem, giving an explicit formula for the probability of an adversary to fool the client. Moreover, we show that the security of a PoR of Lavauzelle and Levy-dit-Vehel was overestimated and propose new secure parameters for it. Finally, using the local correctability properties of Tanner codes, we get another instantiation of our framework and derive an analogous formula for the success probability of the audit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Following the terminology of [1].

References

  1. Badertscher, C., Maurer, U.: Composable and robust outsourced storage. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 354–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_19

    Chapter  Google Scholar 

  2. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementation. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, New York, NY, USA, pp. 43–54. ACM (2009). https://doi.org/10.1145/1655008.1655015

  3. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science (2001). https://doi.org/10.1109/sfcs.2001.959888

  4. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_8

    Chapter  MATH  Google Scholar 

  5. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, New York, NY, USA, pp. 529–540. ACM (2013). https://doi.org/10.1145/2422436.2422494

  6. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_46

    Chapter  Google Scholar 

  7. Jost, D., Maurer, U.: Overcoming impossibility results in composable security using interval-wise guarantees. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 33–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_2

    Chapter  Google Scholar 

  8. Juels, A., Kaliski, B.S., Jr.: PORs: proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, New York, NY, USA, pp. 584–597. ACM (2007). https://doi.org/10.1145/1315245.1315317

  9. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, New York, NY, USA, pp. 80–86. ACM (2000). https://doi.org/10.1145/335305.335315

  10. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC 2011, New York, NY, USA, pp. 167–176. ACM (2011). https://doi.org/10.1145/1993636.1993660

  11. Lavauzelle, J., Levy-Dit-Vehel, F.: New proofs of retrievability using locally decodable codes. In: International Symposium on Information Theory ISIT 2016, Barcelona, Spain, pp. 1809–1813 (2016). https://doi.org/10.1109/ISIT.2016.7541611

  12. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3

    Chapter  MATH  Google Scholar 

  13. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science. Tsinghua University Press (2011)

    Google Scholar 

  14. Paterson, M., Stinson, D., Upadhyay, J.: A coding theory foundation for the analysis of general unconditionally secure proof-of-retrievability schemes for cloud storage. J. Math. Cryptol. 7(3), 183–216 (2013). https://doi.org/10.1515/jmc-2013-5002

    Article  MathSciNet  MATH  Google Scholar 

  15. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_7

    Chapter  Google Scholar 

  16. Tanner, R.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981). https://doi.org/10.1109/TIT.1981.1056404

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Roméas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levy-dit-Vehel, F., Roméas, M. (2022). A Framework for the Design of Secure and Efficient Proofs of Retrievability. In: Nitaj, A., Zkik, K. (eds) Cryptography, Codes and Cyber Security. I4CS 2022. Communications in Computer and Information Science, vol 1747. Springer, Cham. https://doi.org/10.1007/978-3-031-23201-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23201-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23200-8

  • Online ISBN: 978-3-031-23201-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics