Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning to Solve Minimum Cost Multicuts Efficiently Using Edge-Weighted Graph Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

The minimum cost multicut problem is the NP-hard/APX-hard combinatorial optimization problem of partitioning a real-valued edge-weighted graph such as to minimize the total cost of the partition. While graph convolutional neural networks (GNN) have proven to be promising in the context of combinatorial optimization, most of them are only tailored to or tested on positive-valued edge weights, i.e. they do not comply with the nature of the multicut problem. We therefore adapt various GNN architectures including Graph Convolutional Networks, Signed Graph Convolutional Networks and Graph Isomorphic Networks to facilitate the efficient encoding of real-valued edge costs. Moreover, we employ a reformulation of the multicut ILP constraints to a polynomial program as loss function that allows us to learn feasible multicut solutions in a scalable way. Thus, we provide the first approach towards end-to-end trainable multicuts. Our findings support that GNN approaches can produce good solutions in practice while providing lower computation times and largely improved scalability compared to LP solvers and optimized heuristics, especially when considering large instances. Our code is available at https://github.com/steffen-jung/GCN-Multicut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV (2011)

    Google Scholar 

  2. Andres, B., et al.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_56

    Chapter  Google Scholar 

  3. Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering with neural link predictors (2021)

    Google Scholar 

  4. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beier, T., Andres, B., Köthe, U., Hamprecht, F.A.: An efficient fusion move algorithm for the minimum cost lifted multicut problem. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 715–730. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_44

    Chapter  Google Scholar 

  7. Beier, T., Kroeger, T., Kappes, J., Köthe, U., Hamprecht, F.: Cut, glue, & cut: a fast, approximate solver for multicut partitioning. In: CVPR (2014)

    Google Scholar 

  8. Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Methods 14(2), 101–102 (2017)

    Article  Google Scholar 

  9. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: ICLR Workshop (2017)

    Google Scholar 

  10. Chen, Y., Zhang, B.: Learning to solve network flow problems via neural decoding (2020)

    Google Scholar 

  11. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1), 87–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: NIPS (2017)

    Google Scholar 

  13. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Derr, T., Ma, Y., Tang, J.: Signed graph convolutional networks. In: ICDM (2018)

    Google Scholar 

  15. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  16. Ding, J.Y., et al.: Accelerating primal solution findings for mixed integer programs based on solution prediction. In: AAAI, vol. 34, no. 02, pp. 1452–1459 (2020)

    Google Scholar 

  17. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  18. Gallier, J.: Spectral theory of unsigned and signed graphs. Applications to graph clustering: a survey (2016)

    Google Scholar 

  19. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization with graph convolutional neural networks. In: NeurIPS (2019)

    Google Scholar 

  20. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML (2017)

    Google Scholar 

  21. Gurobi Optimization L: Gurobi optimizer reference manual (2020). http://www.gurobi.com

  22. Ho, K., Kardoost, A., Pfreundt, F.-J., Keuper, J., Keuper, M.: A two-stage minimum cost multicut approach to self-supervised multiple person tracking. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12623, pp. 539–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69532-3_33

    Chapter  Google Scholar 

  23. Hou, Y.P.: Bounds for the least Laplacian eigenvalue of a signed graph. Acta Math. Sinica 21(4), 955–960 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  25. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem (2019)

    Google Scholar 

  26. Jung, S., Ziegler, S., Kardoost, A., Keuper, M.: Optimizing edge detection for image segmentation with multicut penalties. CoRR abs/2112.05416 (2021)

    Google Scholar 

  27. Kappes, J.H., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015). https://doi.org/10.1007/s11263-015-0809-x

    Article  MathSciNet  Google Scholar 

  28. Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schn, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23094-3_3

    Chapter  Google Scholar 

  29. Kardoost, A., Keuper, M.: Solving minimum cost lifted multicut problems by node agglomeration. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 74–89. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_5

    Chapter  Google Scholar 

  30. Keuper, M., Andres, B., Brox, T.: Motion trajectory segmentation via minimum cost multicuts. In: ICCV (2015)

    Google Scholar 

  31. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: ICCV (2015)

    Google Scholar 

  32. Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.: Motion segmentation multiple object tracking by correlation co-clustering. TPAMI 42(1), 140–153 (2020)

    Article  Google Scholar 

  33. Keuper, M.: Higher-order minimum cost lifted multicuts for motion segmentation. In: ICCV (2017)

    Google Scholar 

  34. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)

    Google Scholar 

  35. Kim, S., Yoo, C., Nowozin, S., Kohli, P.: Image segmentation using higher-order correlation clustering. TPAMI 36, 1761–1774 (2014)

    Article  Google Scholar 

  36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  37. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  38. Kool, W., Hoof, H.V., Welling, M.: Attention, learn to solve routing problems! In: ICLR (2019)

    Google Scholar 

  39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  40. Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., Luca, E.W.D., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. In: SDM (2010)

    Google Scholar 

  41. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI (2018)

    Google Scholar 

  42. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional networks and guided tree search. In: NIPS (2018)

    Google Scholar 

  43. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. In: AAAI Workshop on Deep Learning on Graphs: Methodologies and Applications (2020)

    Google Scholar 

  44. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  45. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20(3), 498–511 (2009)

    Article  Google Scholar 

  46. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solving the vehicle routing problem. In: NIPS (2018)

    Google Scholar 

  47. Oulabi, Y., Bizer, C.: Extending cross-domain knowledge bases with long tail entities using web table data. In: Advances in Database Technology, pp. 385–396 (2019)

    Google Scholar 

  48. Prates, M.O.R., Avelar, P.H.C., Lemos, H., Lamb, L., Vardi, M.: Learning to solve NP-complete problems - a graph neural network for the decision TSP. In: AAAI (2019)

    Google Scholar 

  49. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  50. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a sat solver from single-bit supervision (2019)

    Google Scholar 

  51. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  52. Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., Sun, Y.: Masked label prediction: unified message passing model for semi-supervised classification (2020)

    Google Scholar 

  53. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR (2017)

    Google Scholar 

  54. Song, J., Andres, B., Black, M., Hilliges, O., Tang, S.: End-to-end learning for graph decomposition. In: ICCV (2019)

    Google Scholar 

  55. Swoboda, P., Andres, B.: A message passing algorithm for the minimum cost multicut problem. In: CVPR (2017)

    Google Scholar 

  56. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  57. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: NIPS (2015)

    Google Scholar 

  58. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Jung .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1760 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, S., Keuper, M. (2023). Learning to Solve Minimum Cost Multicuts Efficiently Using Edge-Weighted Graph Convolutional Neural Networks. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26390-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26389-7

  • Online ISBN: 978-3-031-26390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics