Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Temporal Neighborhood Change Centrality for Important Node Identification in Temporal Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13623))

Included in the following conference series:

Abstract

In the field of complex networks, identifying important nodes is of great importance both in theoretical and practical applications. Compared with the important node identification of the static network, the important node identification of the temporal network is a more urgent problem to solve since most complex networks in reality change with time. The degree centrality method in static networks shows that the more nodes a node is connected to, that is, the more nodes it has in its neighborhood, the more influential and important this node is. Inspired by this method, our idea is that in a temporal network, as time changes, if a node’s neighborhood keeps adding new nodes, the more nodes it affects, the more important it is. Therefore, we propose a new method for identifying important nodes in temporal networks, namely the temporal neighborhood change centrality(TNCC). The TNCC of a node is equal to its average neighborhood change rate over a period of time. The larger the TNCC of a node, the more important it is. We evaluate the proposed method against 7 baseline methods on 6 real temporal networks based on the infectious disease model SIR. Experimental results show that our method is more stable in identifying important nodes and has advantages in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bi, J., Jin, J., Qu, C., Zhan, X., Wang, G., Yan, G.: Temporal gravity model for important node identification in temporal networks. Chaos Solitons Fract. 147, 110934 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  3. Carlos-Sandberg, L., Clack, C.D.: Incorporation of causality structures to complex network analysis of time-varying behaviour of multivariate time series. Sci. Rep. 11(1), 1–16 (2021)

    Article  Google Scholar 

  4. Charakopoulos, A., Karakasidis, T., Sarris, I.: Analysis of magnetohydrodynamic channel flow through complex network analysis. Chaos: Interdiscip. J. Nonlinear Sci. 31(4), 043123 (2021)

    Google Scholar 

  5. Chen, S., Ren, Z., Liu, C., et al.: Identification methods of vital nodes on temporal networks. J. Univ. Electron. Sci. Technol. China 49(2), 291–314 (2020)

    Google Scholar 

  6. Dorogovtsev, S.N., Mendes, J.F.: The Nature of Complex Networks. Oxford University Press (2022)

    Google Scholar 

  7. Elmezain, M., Othman, E.A., Ibrahim, H.M.: Temporal degree-degree and closeness-closeness: a new centrality metrics for social network analysis. Mathematics 9(22), 2850 (2021)

    Article  Google Scholar 

  8. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Google Scholar 

  9. Gleich, D.F.: PageRank beyond the web. SAIM Rev. 57(3), 321–363 (2015)

    Google Scholar 

  10. Jian-Nan, Y., Jian-Guo, L., Qiang, G.: Node importance identification for temporal network based on inter-layer similarity. Acta Phys. Sin. 67(4), 048901 (2018)

    Google Scholar 

  11. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

    Article  Google Scholar 

  12. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350 (2013)

    Google Scholar 

  13. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lv, L., et al.: Eigenvector-based centralities for multilayer temporal networks under the framework of tensor computation. Expert Syst. Appl. 184, 115471 (2021)

    Article  Google Scholar 

  15. Magnien, C., Tarissan, F.: Time evolution of the importance of nodes in dynamic networks. In: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1200–1207. IEEE (2015)

    Google Scholar 

  16. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  18. Qu, C., Zhan, X., Wang, G., Wu, J.-L., Zhang, Z.-K.: Temporal information gathering process for node ranking in time-varying networks. Chaos: Interdiscip. J. Nonlinear Sci. 29(3), 033116 (2019)

    Google Scholar 

  19. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sapiezynski, P., Stopczynski, A., Lassen, D.D., Lehmann, S.: Interaction data from the Copenhagen networks study. Sci. Data 6(1), 1–10 (2019)

    Article  Google Scholar 

  21. Su, Z., Gao, C., Liu, J., Jia, T., Wang, Z., Kurths, J.: Emergence of nonlinear crossover under epidemic dynamics in heterogeneous networks. Phys. Rev. E 102(5), 052311 (2020)

    Article  MathSciNet  Google Scholar 

  22. Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15(1), 537–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Pei, X., Wang, Y., Yao, Y.: Ranking the key nodes with temporal degree deviation centrality on complex networks. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp. 1484–1489. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., He, L., Tao, L., Wang, Y., Zhang, Z. (2023). Temporal Neighborhood Change Centrality for Important Node Identification in Temporal Networks. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623. Springer, Cham. https://doi.org/10.1007/978-3-031-30105-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30105-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30104-9

  • Online ISBN: 978-3-031-30105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics