Abstract
Polynomial commitment schemes allow a prover to commit to a polynomial and later reveal the evaluation of the polynomial on an arbitrary point along with proof of validity. This object is central in the design of many cryptographic schemes such as zero-knowledge proofs and verifiable secret sharing. In the standard definition, the polynomial is known to the prover whereas the evaluation points are not private. In this paper, we put forward the notion of private polynomial commitments that capture additional privacy guarantees, where the evaluation points are hidden from the verifier while the polynomial is hidden from both.
We provide concretely efficient constructions that allow simultaneously batch the verification of many evaluations with a small additive overhead. As an application, we design a new concretely efficient multi-party private set-intersection with malicious security and improved asymptotic communication and space complexities.
We demonstrate the concrete efficiency of our construction via an implementation. Our scheme can prove \(2^{10}\) evaluations of a private polynomial of degree \(2^{10}\) in 157 s. The proof size is only 169 KB and the verification time is 11.8 s. Moreover, we also implemented the multi-party private set intersection protocol and scale it to 1000 parties (which has not been shown before). The total running time for \(2^{14}\) elements per party is 2,410 s. While existing protocols offer better computational complexity, our scheme offers significantly smaller communication and better scalability (in the number of parties) owing to better memory usage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ate pairing. https://github.com/herumi/ate-pairing
The GNU multiple precision arithmetic library. https://gmplib.org/
Abascal, J., Sereshgi, M.H.F., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Is the classical GMW paradigm practical? the case of non-interactive actively secure 2pc. In: CCS, pp. 1591–1605 (2020)
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29, 363–421 (2016)
Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_22
Backes, M., Datta, A., Kate, A.: Asynchronous computational VSS with reduced communication complexity. In: CT-RSA, vol. 7779, pp. 259–276 (2013)
Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: CCS, pp. 863–874 (2013)
Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_38
Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: practical multiparty maliciously-secure private set intersection. In: ASIA CCS, pp. 1098–1112 (2022)
Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_7
Bhadauria, R., Hazay, C.: Multi-clients verifiable computation via conditional disclosure of secrets. In: SCN, pp. 150–171 (2020)
Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable computation on encrypted data. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 528–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_19
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE S &P, pp. 315–334 (2018)
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_3
Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_11
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (Trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_38
Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_21
Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_2
Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with stateless transaction validation. IACR Cryptol. ePrint Arch., p. 968 (2018)
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_28
De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_13
Fenske, E., Mani, A., Johnson, A., Sherr, M.: Distributed measurement with private set-union cardinality. In: CCS, pp. 2295–2312 (2017)
Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: CCS, pp. 501–512 (2012)
Fiore, D., Gennaro, R., Pastro, V.: Efficiently encrypted data. In: ACM SIGSAC, pp. 844–855 (2014)
Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on encrypted data. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 124–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_5
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch. 2019, 953 (2019)
Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplification for private set intersection. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_14
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25
Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22
Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30
Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for multiple vector commitments. In: ACM SIGSAC, pp. 2007–2023 (2020)
Gordon, S.D., Hazay, C., Le, P.H.: Fully secure PSI via mpc-in-the-head. PoPETS 2022(3), 291–313 (2022)
Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-Client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_6
Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_4
Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits with constant communication overhead in the plain model. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_1
Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-based security. IACR Cryptol. ePrint Arch., p. 459 (2009)
Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_23
Juels, A., Jr., B.S.K.: Pors: proofs of retrievability for large files. In: CCS, pp. 584–597 (2007)
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. IACR Cryptol. ePrint Arch. 2020, 1274 (2020)
Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_15
Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35, 1254–1281 (2006)
Nguyen, D.T., Trieu, N.: Mpccache: privacy-preserving multi-party cooperative cache sharing at the edge. IACR Cryptol. ePrint Arch. (2021). https://eprint.iacr.org/2021/317
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_13
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25
Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_5
Raab, M., Steger, A.: “balls into bins" - a simple and tight analysis. In: Randomization and Approximation Techniques in Computer Science, pp. 159–170 (1998)
Rosulek, M., Trieu, N.: Compact and malicious private set intersection for small sets. IACR Cryptol. ePrint Arch., p. 1159 (2021)
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: IEEE S &P, pp. 877–893 (2020)
Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with polylogarithmic communication complexity. IACR Cryptol. ePrint Arch. 2019, 1020 (2019)
Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: IEEE S &P, pp. 926–943 (2018)
Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy: statistics in tor by measuring securely. In: CCS, pp. 615–632 (2019)
Wieder, U.: Balanced allocations with heterogenous bins. In: SPAA, pp. 188–193 (2007)
Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24
Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communication cost in cloud. In: SCC@ASIACCS, pp. 19–26. ACM (2013)
Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: IEEE S &P (2020)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: VSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: IEEE S &P, pp. 863–880 (2017)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-knowledge version of VSQL. IACR Cryptol. ePrint Arch. 2017, 1146 (2017)
Acknowledgements
We thank the anonymous PKC‘23 reviewers for their helpful comments. The first and second authors are supported by ISF grant No. 1316/18. The second, third and fifth authors are supported by DARPA under Contract No. HR001120C0087. The third author was supported by Technology and Humanity Fund from Georgetown University’s McCourt School of Public Policy. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Bhadauria, R., Hazay, C., Venkitasubramaniam, M., Wu, W., Zhang, Y. (2023). Private Polynomial Commitments and Applications to MPC. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13941. Springer, Cham. https://doi.org/10.1007/978-3-031-31371-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-31371-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31370-7
Online ISBN: 978-3-031-31371-4
eBook Packages: Computer ScienceComputer Science (R0)