Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Energy Harvesting Techniques and Trends in Electronic Applications

  • Chapter
  • First Online:
Energy Harvesting Trends for Low Power Compact Electronic Devices

Abstract

Energy harvesting/scavenging is a technique in which ambient energy is extracted from the surroundings and converting it to another form, which can be later used for diverse applications. This chapter focuses on the techniques to acquire various forms of energy and converting them into electrical energy to be utilized for portable electronic devices and sensors which need low power for their operation. Sources for energy harvesting are wind, light, temperature, acoustic signals, fluid flow, electromagnetic (EM) waves, mechanical vibrations, pressure, etc. Also, several sensors like turbines, photovoltaic cells, thermoelectric generators, antennas, solar panels, photodiodes, and piezoelectric sensors are used to capture the ambient energy. These energy harvesting techniques are used in transportation, civil infrastructure, smart houses, weather monitoring, healthcare, defense, manufacturing, production, etc. This chapter also presents state of the art on different energy harvesting techniques, energy conversion methods/principles, merits and demerits of each technique, applications focusing toward portable electronic devices and sensors, and current ways to power electronic devices with energy derived from the ambient sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hesham R, Soltan A, Madian A (2021) Energy harvesting schemes for wearable devices. AEU Int J Electron Commun 138:153888

    Article  Google Scholar 

  2. Kim KK, Choi J, Ko SH (2021) Energy harvesting untethered soft electronic devices. Adv Healthc Mater 10(17):2002286

    Article  Google Scholar 

  3. Bosso N, Magelli M, Zampieri N (2021) Application of low-power energy harvesting solutions in the railway field: a review. Veh Syst Dyn 59(6):841–871

    Article  Google Scholar 

  4. Grossi M (2021) Energy harvesting strategies for wireless sensor networks and mobile devices: a review. Electronics 10(6):661

    Article  Google Scholar 

  5. Sanislav T, Mois GD, Zeadally S, Folea SC (2021) Energy harvesting techniques for internet of things (IoT). IEEE Access 9:39530 –39549

    Article  Google Scholar 

  6. Williams AJ, Torquato MF, Cameron IM, Fahmy AA, Sienz J (2021) Survey of energy harvesting technologies for wireless sensor networks. IEEE Access 9:77493 –77510

    Article  Google Scholar 

  7. Choi J, Jung I, Kang C-Y (2019) A brief review of sound energy harvesting. Nano Energy 56:169 –183

    Article  Google Scholar 

  8. Mateu L, Moll F (2005) Review of energy harvesting techniques and applications for microelectronics. VLSI Circuits and Systems II 5837:359 –373

    Article  Google Scholar 

  9. Nabavi S, Zhang L (2016) Portable wind energy harvesters for low-power applications: a survey. Sensors 16(7):1101

    Article  Google Scholar 

  10. Calautit K, Nasir DS, Hughes BR (2021) Low power energy harvesting systems: state of the art and future challenges. Renew Sust Energ Rev 147:111230

    Article  Google Scholar 

  11. Davidson J, Mo C (2014) Recent advances in energy harvesting technologies for structural health monitoring applications. Smart Mat Res

    Google Scholar 

  12. Ferdous MR, Reza AW, Siddiqui MF (2016) Renewable energy harvesting for wireless sensors using passive RFID tag technology: a review. Renew Sust Energ Rev 58:1114 –1128

    Article  Google Scholar 

  13. Pozo B, Garate JI, Araujo JA, Ferreiro S (2019) Energy harvesting technologies and equivalent electronic structural models. Electronics 8(5):486

    Article  Google Scholar 

  14. Park J-W, Jung H-J, Jo H, Spencer BF Jr (2012) Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge. Energies 5(9):3450–3464

    Article  Google Scholar 

  15. Perez M, Boisseau S, Gasnier P, Willemin J, Reboud J-L (2015) An electret-based aeroelastic flutter energy harvester. Smart Mater Struct 24(3):035004

    Article  Google Scholar 

  16. Chen X, Ma X, Ren W, Gao L, Lu S, Tong D, Wang F, Chen Y, Huang Y, He H, Tang B, Zhang J, Zhang X, Mu X, Yang Y (2020) A triboelectric nanogenerator exploiting the Bernoulli effect for scavenging wind energy. Cell Rep Phys Sci 1(9)

    Google Scholar 

  17. Toh WY, Tan YK, Koh WS, Siek L (2014) Autonomous wearable sensor nodes with flexible energy harvesting. IEEE Sensors J 14(7):2299–2306

    Article  Google Scholar 

  18. Gajanur NR, Singh A, Jain A (2016) Solar powered railway track monitoring system. In: IEEE International Conference on Power and Renewable Energy (ICPRE), pp 190–194

    Chapter  Google Scholar 

  19. Silva-Leon J, Cioncolini A, Nabawy MR, Revell A, Kennaugh A (2019) Simultaneous wind and solar energy harvesting with inverted flags. Applied Energy 1(239):846–858

    Article  Google Scholar 

  20. Wang DA, Chang KH (2010) Electromagnetic energy harvesting from flow induced vibration. Microelectron J 41(6):356–364

    Article  Google Scholar 

  21. Wang DA, Ko HH (2010) Piezoelectric energy harvesting from flow-induced vibration. J Micromech Microeng 20(2):025019

    Article  Google Scholar 

  22. Azevedo JAR, Santos FES (2012) Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits, Devices Syst 6(6):413–420

    Article  MathSciNet  Google Scholar 

  23. Khan FU (2016) An improved Design of Helmholtz Resonator for acoustic energy harvesting devices. International Conference on Intelligent Systems Engineering:2–7

    Google Scholar 

  24. Iizumi S, Shu K, Tomioka S, Tsujimoto K, Uchida Y, Tomii K, Matsuda T, Nishioka Y (2011) Lead zirconate titanate acoustic energy harvesters utilizing different polarizations on diaphragm. Procedia Engineering 25:187 –190

    Article  Google Scholar 

  25. Yang J, Chen J, Liu Y, Yang W, Su Y, Wang ZL (2014) Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3):2649–2657

    Article  Google Scholar 

  26. Shen S, Chiuand CY, Murch RD (2016) A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters 16:3071 –3074

    Article  Google Scholar 

  27. Koohestani M, Tissier J, Latrach M (2020) A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU Int J Electron Commun 127:153478

    Article  Google Scholar 

  28. Alex-Amor A, Palomares-Caballero A, Fernández-González JM, Padilla P, Marcos D, Sierra-Castañer M, Esteban J (2019) RF energy harvesting system based on an archimedean spiral antenna for low-power sensor applications. Sensors 19(6):1318

    Article  Google Scholar 

  29. Lee J, Choi B (2014) Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. Energy Convers Manag 78:32 –38

    Article  Google Scholar 

  30. Yoon Y-J, Park W-T, Li KHH, Ng YQ, Song Y (2013) A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks. Int J Precis Eng Manuf 14(7):1257–1262

    Article  Google Scholar 

  31. Yang J, Lee M, Park M-J, Jung S-Y, Kim J (2015) A 2.5-V, 160–μJ-output piezoelectric energy harvester and power management IC for batteryless wireless switch (BWS) applications. Proc Symp VLSI Circuits (VLSI Circuits):C282–C283

    Google Scholar 

  32. Wang W, Vinco A, Pavlov N, Wang N, Hayes M, O’Mathuna C (2013) A rotating machine acoustic emission monitoring system powered by multi-source energy harvester. In: Proc. 1st Int. workshop energy neutral Sens. Syst. (ENSSys), New York, NY, USA, pp 5:1 – 5:6

    Google Scholar 

  33. Sari I, Balkan T, Külah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19(1):14–27

    Article  Google Scholar 

  34. Gaur A, Tiwari S, Kumar C, Maiti P (2020) Polymer biowaste hybrid for enhanced piezoelectric energy harvesting. ACS Applied Electronic Materials 2:1426 –1432

    Article  Google Scholar 

  35. Yu H, Yue Q (2016) Indoor light energy harvesting system for energy-aware wireless sensor node. Energy Procedia 16:1027 –1032

    Article  Google Scholar 

  36. Iyer V, Bayati E, Nandakumar R, Majumdar A, Gollakota S (2018) Charging a smartphone across a room using lasers. Proceed ACM Interactive Mobile Wearable Ubiquitous Technol 1(4):1–21

    Article  Google Scholar 

  37. Jabbar H, Jeong T (2022) Ambient light energy harvesting and numerical modeling of non-linear phenomena. Appl Sci 12(4):2068

    Article  Google Scholar 

  38. Ahn D, Choi K (2018) Performance evaluation of thermoelectric energy harvesting system on operating rolling stock. Micromachines 9(7):359

    Article  Google Scholar 

  39. Becker T, Kluge M, Schalk J et al (2009) Autonomous sensor nodes for aircraft structural health monitoring. IEEE Sensors J 9(11):1589–1595

    Article  Google Scholar 

  40. Gao M, Su C, Cong J et al (2019) Harvesting thermoelectric energy from railway track. Energy 180:315 –329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, P., Gaur, A., Kumar, C., Nella, A., Bhowmick, A., Rajagopal, M. (2023). Energy Harvesting Techniques and Trends in Electronic Applications. In: Nella, A., Bhowmick, A., Kumar, C., Rajagopal, M. (eds) Energy Harvesting Trends for Low Power Compact Electronic Devices. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-35965-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35965-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35964-4

  • Online ISBN: 978-3-031-35965-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics