Abstract
This chapter investigates how symmetries can be used to reduce the computational complexity in polynomial optimization problems. A focus will be specifically given on the Moment-SOS hierarchy in polynomial optimization, where results from representation theory and invariant theory of groups can be used. In addition, symmetry reduction techniques which are more generally applicable are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acevedo, J., Velasco, M.: Test sets for nonnegativity of polynomials invariant under a finite reflection group. J. Pure Appl. Algebra 220(8), 2936–2947 (2016)
Ariki, S., Terasoma, T., Yamada, H.-F.: Higher Specht polynomials. Hiroshima Math. J. 27(1), 177–188 (1997)
Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909–924 (2008)
Bachoc, C., Gijswijt, D.C., Schrijver, A., Vallentin, F.: Invariant semidefinite programs. In: Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 219–269. Springer, Berlin (2012)
Basu, S., Riener, C.: Bounding the equivariant Betti numbers of symmetric semi-algebraic sets. Adv. Math. 305, 803–855 (2017)
Basu, S., Riener, C.: Efficient algorithms for computing the Euler-Poincaré characteristic of symmetric semi-algebraic sets. In: Ordered Algebraic Structures and Related Topics: International Conference on Ordered Algebraic Structures and Related Topics, October 12–16, 2015, Centre International de Rencontres Mathématiques (CIRM), Luminy, vol. 697, pp. 53–81. American Mathematical Society, Providence (2017)
Basu, S., Riener, C.: On the isotypic decomposition of cohomology modules of symmetric semi-algebraic sets: polynomial bounds on multiplicities. Int. Math. Res. Not. 2020(7), 2054–2113 (2020)
Basu, S., Riener, C.: Vandermonde varieties, mirrored spaces, and the cohomology of symmetric semi-algebraic sets. Found. Comput. Math. 22(5), 1395–1462 (2022)
Benson, D.J.: Polynomial Invariants of Finite Groups, vol. 190. Cambridge University Press, Cambridge (1993)
Bergeron, F.: Algebraic Combinatorics and Coinvariant Spaces. CRC Press, Boca Raton (2009)
Bien, F.: Constructions of telephone networks by group representations. Not. Am. Math. Soc. 36, 5–22 (1989)
Blekherman, G.: Nonnegative polynomials and sums of squares. J. Am. Math. Soc. 25(3), 617–635 (2012)
Blekherman, G., Riener, C.: Symmetric non-negative forms and sums of squares. Discret. Comput. Geom. 65(3), 764–799 (2021)
Bröcker, L.: On symmetric semialgebraic sets and orbit spaces. Banach Center Publ. 44(1), 37–50 (1998)
Chandrasekaran, V., Shah, P.: Relative entropy relaxations for signomial optimization. SIAM J. Optim. 26(2), 1147–1173 (2016)
Cimprič, J., Kuhlmann, S., Scheiderer, C.: Sums of squares and moment problems in equivariant situations. Trans. Am. Math. Soc. 361(2), 735–765 (2009)
de Laat, D., Vallentin, F.: A semidefinite programming hierarchy for packing problems in discrete geometry. Math. Program. 151(2), 529–553 (2015)
de Laat, D., Keizer, W.d.M., Machado, F.C.: The Lasserre hierarchy for equiangular lines with a fixed angle (2022). arXiv preprint arXiv:2211.16471
Debus, S., Riener, C.: Reflection groups and cones of sums of squares. J. Symb. Comput. 119, 112–144 (2023)
Derksen, H., Kemper, G.: Computational Invariant Theory. Springer, Berlin (2015)
Dostert, M., Guzmán, C., de Oliveira Filho, F.M., Vallentin, F.: New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput. Geom. 58(2), 449–481 (2017)
Faugère, J.-C., Labahn, G., El Din, M.S., Schost, É., Vu, T.X.: Computing critical points for invariant algebraic systems. J. Symb. Comput. 116, 365–399 (2023)
Friedl, T., Riener, C., Sanyal, R.: Reflection groups, reflection arrangements, and invariant real varieties. Proc. Am. Math. Soc. 146(3), 1031–1045 (2018)
Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer Science & Business Media, Berlin (2013)
Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete problems. In: Proc. ACM Symp. on Theory of Computing, pp. 47–63 (1974)
Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)
Gijswijt, D., Schrijver, A., Tanaka, H.: New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. J. Comb. Theory A 113(8), 1719–1731 (2006)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)
Görlach, P., Riener, C., Weißer, T.: Deciding positivity of multisymmetric polynomials. J. Symb. Comput. 74, 603–616 (2016)
Hannabuss, K.: Sound and symmetry. Math. Intell. 19(4), 16–20 (1997)
Haviland, E.: On the momentum problem for distribution functions in more than one dimension. II. Am. J. Math. 58(1), 164–168 (1936)
Heaton, A., Shankar, I.: An sos counterexample to an inequality of symmetric functions. J. Pure Appl. Algebra 225(8), 106656 (2021)
Herr, K., Rehn, T., Schürmann, A.: Exploiting symmetry in integer convex optimization using core points. Oper. Res. Lett. 41(3), 298–304 (2013)
Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32(3), 342–350 (1888)
Hubert, E., Bazan, E.R.: Algorithms for fundamental invariants and equivariants. Math. Comput. 91(337), 2459–2488 (2022)
Hubert, E., Metzlaff, T., Moustrou, P., Riener, C.: Optimization of trigonometric polynomials with crystallographic symmetry and applications (2022). HAL preprint hal-03768067
Humphreys, J.E.: Reflection Groups and Coxeter Groups, vol. 29. Cambridge University Press, Cambridge (1990)
James, G.D.: The Representation Theory of the Symmetric Groups, vol. 682. Springer, Berlin (2006)
Judd, B.R.: Lie groups in atomic and molecular spectroscopy. SIAM J. Appl. Math. 25(2), 186–192 (1973)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)
Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum-of-squares hierarchy lower bounds for symmetric formulations. Math. Program. 182(1), 369–397 (2020)
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications, vol. 1. World Scientific, Singapore (2009)
Laurent, M.: Strengthened semidefinite programming bounds for codes. Math. Program. 109(2), 239–261 (2007)
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, vol. 149. IMA Vol. Math. Appl., pp. 157–270. Springer, New York (2009)
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)
Mourrain, B., Vrahatis, M.N., Yakhoubson, J.-C.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complexity 182, 612–640 (2002)
Moustrou, P., Riener, C., Verdure, H.: Symmetric ideals, specht polynomials and solutions to symmetric systems of equations. J. Symb. Comput. 107, 106–121 (2021)
Moustrou, P., Naumann, H., Riener, C., Theobald, T., Verdure, H.: Symmetry reduction in am/gm-based optimization. SIAM J. Optim. 32(2), 765–785 (2022)
Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)
Nagata, M.: On the 14-th problem of Hilbert. Am. J. Math. 81(3), 766–772 (1959)
Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)
Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, Massachusetts Institute of Technology (2000)
Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. J. Pure Appl. Algebra 127(1), 99–104 (1998)
Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81(3), 539–554 (1985)
Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77(1), 129–162 (1997)
Raymond, A., Saunderson, J., Singh, M., Thomas, R.R.: Symmetric sums of squares over k-subset hypercubes. Math. Program. 167(2), 315–354 (2018)
Riener, C.: Symmetries in semidefinite and polynomial optimization: relaxations, combinatorics, and the degree principle. PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main (2011)
Riener, C.: On the degree and half-degree principle for symmetric polynomials. J. Pure Appl. Algebra 216(4), 850–856 (2012)
Riener, C.: Symmetric semi-algebraic sets and non-negativity of symmetric polynomials. J. Pure Appl. Algebra 220(8), 2809–2815 (2016)
Riener, C., Schabert, R.: Linear slices of hyperbolic polynomials and positivity of symmetric polynomial functions (2022). arXiv preprint arXiv:2203.08727
Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.B.: Exploiting symmetries in sdp-relaxations for polynomial optimization. Math. Oper. Res. 38(1), 122–141 (2013)
Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.B.: Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res. 38(1), 122–141 (2013)
Schürmann, A.: Exploiting symmetries in polyhedral computations. Fields Inst. Commun. 69, 265–278 (2013)
Serre, J.-P., et al.: Linear Representations of Finite Groups, vol. 42. Springer, Berlin (1977)
Specht, W.: Zur Darstellungstheorie der symmetrischen Gruppe. Math. Z. 42(1), 774–779 (1937)
Springer, T.A.: Invariant Theory, vol. 585. Springer, Berlin (2006)
Stanley, R.P.: Enumerative Combinatorics Volume 1, 2nd edn. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2011)
Steinberg, R.: Invariants of finite reflection groups. Can. J. Math. 12, 616–618 (1960)
Stiefel, E., Fässler, A.: Group Theoretical Methods and Their Applications. Springer Science & Business Media, Berlin (2012)
Sturmfels, B.: Algorithms in Invariant Theory. Springer Science & Business Media, Berlin (2008)
Timofte, V.: On the positivity of symmetric polynomial functions.: Part i: General results. J. Math. Anal. Appl. 284(1), 174–190 (2003)
Turski, J.: Geometric fourier analysis of the conformal camera for active vision. SIAM Rev. 46(2), 230–255 (2004)
Vallentin, F.: Symmetry in semidefinite programs. Linear Algebra Appl. 430(1), 360–369 (2009)
Vu, T.X.: Computing critical points for algebraic systems defined by hyperoctahedral invariant polynomials. In: ISSAC ’2012–Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, pp. 167–175 (2022)
Waterhouse, W.C.: Do symmetric problems have symmetric solutions? Am. Math. Mon. 90(6), 378–387 (1983)
Wigner, E.P.: Reduction of direct products and restriction of representations to subgroups: the everyday tasks of the quantum theorists. SIAM J. Appl. Math. 25(2), 169–185 (1973)
Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, vol. 27. Springer Science & Business Media, Berlin (2012)
Acknowledgements
This expository article originates from a minicourse “Symmetries in algorithmic questions in real algebraic geometry” held during the virtual POEMA (Polynomial Optimization, Efficiency Through Moments and Algebra) Learning Weeks in July 2020. The authors would like to thank the anonymous reviewers for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Moustrou, P., Riener, C., Verdure, H. (2023). Symmetries in Polynomial Optimization. In: Kočvara, M., Mourrain, B., Riener, C. (eds) Polynomial Optimization, Moments, and Applications. Springer Optimization and Its Applications, vol 206. Springer, Cham. https://doi.org/10.1007/978-3-031-38659-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-38659-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38658-9
Online ISBN: 978-3-031-38659-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)