Abstract
This paper reports on the industrial use of our formal-method based interlocking verification tool, called SafeCap, and on what we needed to change in SafeCap as a result of our experience in applying it to a large number of commercial signalling projects. The substantial efforts dedicated to tool improvement are caused by the novelty of the technology and by a substantial gap to be bridged between the academic prototype, developed initially, and the industry-strength tool SafeCap has become now. It is our belief that when such innovative tools and technologies are developed for industrial use it is often impossible to fully understand and correctly elicit the complete set of requirements for their development. The paper describes the extensions added and the modifications made to the functionality of SafeCap after it was demonstrated to be successful in a number of real signalling projects and, as a result of this, was formally approved for use in the UK railway. We believe this experience will be useful for the developers of formal verification methods, tools and technologies to be deployed in industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The paper was prepared in 2020 and submitted to the journal in early 2021.
References
Solid State Interlocking. Code of practice for the testing and commissioning of SSI signalling schemes, SSI 8501, Issue 1. British Railways Board (1989)
EN 50128: Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems. CENELEC (2020)
Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: Proceedings of Boogie 2011, pp. 53–64 (2011)
Cribbens, A.H.: Solid state interlocking (SSI): an integrated electronic signalling system for mainline railways. Proc. IEE 134(3), 148–158 (1987)
Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1
Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Practical verification of railway signalling programs. IEEE Trans. Dependable Secure Comput. 20(Jan–Feb), 695–707 (2023)
Iliasov, A., Laibinis, L., Taylor, D., Lopatkin, I., Romanovsky, A.: Safety invariant verification that meets engineers’ expectations. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds.) RSSRail 2022. LNCS, vol. 13294, pp. 20–31. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05814-1_2
Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Formal verification of signalling programs with SafeCap. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 91–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99130-6_7
Iliasov, A., Taylor, D., Romanovsky, A.: Automated testing of SSI data. IRSE (Institution of Railway Signal Engineers) News 241 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A. (2023). The SafeCap Trajectory: Industry-Driven Improvement of an Interlocking Verification Tool. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-43366-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43365-8
Online ISBN: 978-3-031-43366-5
eBook Packages: Computer ScienceComputer Science (R0)