Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Metric Dimension Parameterized by Treewidth in Chordal Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14093))

Included in the following conference series:

  • 439 Accesses

Abstract

The metric dimension has been introduced independently by Harary, Melter [11] and Slater [15] in 1975 to identify vertices of a graph G using its distances to a subset of vertices of G. A resolving set X of a graph G is a subset of vertices such that, for every pair (uv) of vertices of G, there is a vertex x in X such that the distance between x and u and the distance between x and v are distinct. The metric dimension of the graph is the minimum size of a resolving set. Computing the metric dimension of a graph is NP-hard even on split graphs and interval graphs. Bonnet and Purohit [2] proved that the metric dimension problem is W[1]-hard parameterized by treewidth. Li and Pilipczuk strengthened this result by showing that it is NP-hard for graphs of treewidth 24 in [14]. In this article, we prove that metric dimension is FPT parameterized by treewidth in chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    The addition of a single edge in a graph might modify the metric dimension by \(\varOmega (n)\), see e.g. [7].

References

  1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. CoRR abs/1602.02610 (2016)

    Google Scholar 

  2. Bonnet, É., Purohit, N.: Metric dimension parameterized by treewidth. Algorithmica 83(8), 2606–2633 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. Chapman and Hall/CRC (2015)

    Google Scholar 

  4. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) Algorithms - ESA 2012 (2012)

    Google Scholar 

  5. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25, 71–76 (1961). https://doi.org/10.1007/BF02992776

    Article  MathSciNet  MATH  Google Scholar 

  6. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eroh, L., Feit, P., Kang, C.X., Yi, E.: The effect of vertex or edge deletion on the metric dimension of graphs. J. Comb 6(4), 433–444 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, J.: A guide to the theory of NP-completeness. J. Algorithms (1979)

    Google Scholar 

  10. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci. 918, 60–76 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1975)

    MATH  Google Scholar 

  12. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: 2013 IEEE Conference on Computational Complexity, pp. 266–276. IEEE (2013)

    Google Scholar 

  13. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  14. Li, S., Pilipczuk, M.: Hardness of metric dimension in graphs of constant treewidth. Algorithmica 84(11), 3110–3155 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Slater, P.J.: Leaves of trees. Congressus Numerantium 14 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Deschamps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousquet, N., Deschamps, Q., Parreau, A. (2023). Metric Dimension Parameterized by Treewidth in Chordal Graphs. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics