Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithms and Hardness for Metric Dimension on Digraphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14093))

Included in the following conference series:

  • 449 Accesses

Abstract

In the Metric Dimension problem, one asks for a minimum-size set R of vertices such that for any pair of vertices of the graph, there is a vertex from R whose two distances to the vertices of the pair are distinct. This problem has mainly been studied on undirected graphs and has gained a lot of attention in the recent years. We focus on directed graphs, and show how to solve the problem in linear-time on digraphs whose underlying undirected graph (ignoring multiple edges) is a tree. This (nontrivially) extends a previous algorithm for oriented trees. We then extend the method to unicyclic digraphs (understood as the digraphs whose underlying undirected multigraph has a unique cycle). We also give a fixed-parameter-tractable algorithm for digraphs when parameterized by the directed modular-width, extending a known result for undirected graphs. Finally, we show that Metric Dimension is NP-hard even on planar triangle-free acyclic digraphs of maximum degree 6.

Research funded by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20–25) and by the ANR project GRALMECO (ANR-21-CE48-0004).

A. Hakanen—Research supported by the Jenny and Antti Wihuri Foundation and partially by Academy of Finland grant number 338797.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The definition that we use has been called strong metric dimension in [1], as opposed to weak metric dimension, where one single vertex may be unreachable from any resolving set vertex. The former definition seems more natural to us. However, the term strong metric dimension is already used for a different concept, see [25]. Thus, to prevent confusion, we avoid the prefix strong in this paper.

References

  1. Araujo, J., et al.: On finding the best and worst orientations for the metric dimension. Algorithmica 1–41 (2023)

    Google Scholar 

  2. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105(1), 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartrand, G., Raines, M., Zhang, P.: The directed distance dimension of oriented graphs. Math. Bohem. 125, 155–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dailly, A., Foucaud, F., Hakanen, A.: Algorithms and hardness for metric dimension on digraphs. arXiv preprint arXiv:2307.09389 (2023)

  7. Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algorithms Appl. 19(1), 313–323 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernau, H., Heggernes, P., van’t Hof, P., Meister, D., Saei, R.: Computing the metric dimension for chain graphs. Inf. Process. Lett. 115(9), 671–676 (2015)

    Google Scholar 

  11. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galby, E., Khazaliya, L., Inerney, F.M., Sharma, R., Tale, P.: Metric dimension parameterized by feedback vertex set and other structural parameters. In: 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, 22–26 August 2022, Vienna, Austria. LIPIcs, vol. 241, pp. 51:1–51:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  13. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theoret. Comput. Sci. 918, 60–76 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5–7 June 2013, pp. 266–276. IEEE Computer Society (2013)

    Google Scholar 

  16. Hoffmann, S., Elterman, A., Wanke, E.: A linear time algorithm for metric dimension of cactus block graphs. Theoret. Comput. Sci. 630, 43–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoffmann, S., Wanke, E.: Metric Dimension for gabriel unit disk graphs Is NP-complete. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718, pp. 90–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36092-3_10

    Chapter  Google Scholar 

  18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, S., Pilipczuk, M.: Hardness of metric dimension in graphs of constant treewidth. Algorithmica 84(11), 3110–3155 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lobstein, A.: Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography (2022). https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf

  21. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discret. Appl. Math. 145(2), 198–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Melter, R.A., Tomescu, I.: Metric bases in digital geometry. Comput. Vision Graph. Image Process. 25(1), 113–121 (1984)

    Article  MATH  Google Scholar 

  23. Mohar, B.: Face covers and the genus problem for apex graphs. J. Combin. Theory Ser. B 82(1), 102–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moscarini, M.: Computing a metric basis of a bipartite distance-hereditary graph. Theoret. Comput. Sci. 900, 20–24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discret. Appl. Math. 155(3), 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math. Combin. Comput. 40, 17–32 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Rajan, B., Rajasingh, I., Cynthia, J.A., Manuel, P.: Metric dimension of directed graphs. Int. J. Comput. Math. 91(7), 1397–1406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sedlar, J., Škrekovski, R.: Bounds on metric dimensions of graphs with edge disjoint cycles. Appl. Math. Comput. 396, 125908 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Sedlar, J., Škrekovski, R.: Vertex and edge metric dimensions of unicyclic graphs. Discret. Appl. Math. 314, 81–92 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Slater, P.J.: Leaves of trees. Congressius Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_33

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Dailly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dailly, A., Foucaud, F., Hakanen, A. (2023). Algorithms and Hardness for Metric Dimension on Digraphs. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics