Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TransVQ-VAE: Generating Diverse Images Using Hierarchical Representation Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14256))

Included in the following conference series:

  • 1484 Accesses

Abstract

Understanding how to learn feature representations for images and generate high-quality images under unsupervised learning was challenging. One of the main difficulties in feature learning has been the problem of posterior collapse in variational inference. This paper proposes a hierarchical aggregated vector-quantized variational autoencoder, called TransVQ-VAE. Firstly, the multi-scale feature information based on the hierarchical Transformer is complementarily encoded to represent the global and structural dependencies of the input features. Then, it is compared to the latent encoding space with a linear difference to reduce the feature dimensionality. Finally, the decoder generates synthetic samples with higher diversity and fidelity compared to previous ones. In addition, we propose a dual self-attention module in the encoding process that uses spatial and channel information to capture distant texture correlations, contributing to the consistency and realism of the generated images. Experimental results on MNIST, CIFAR-10, CelebA-HQ, and ImageNet datasets show that our approach significantly improves the diversity and visual quality of the generated images.

Supported by the National Social Science Fund of China (21BTJ071).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Laufer, E., Alain, G., Yosinski, J.: Deep generative stochastic networks trainable by backprop. In: International Conference on Machine Learning, vol. 32, pp. 226–234 (2014)

    Google Scholar 

  2. Burgess, C.P., et al.: Understanding disentangling in \(\beta \)-VAE. arXiv preprint arXiv:1804.03599 (2018)

  3. Chen, X., Mishra, N., Rohaninejad, M., Abbeel, P.: Pixelsnail: an improved autoregressive generative model. In: International Conference on Machine Learning, pp. 864–872 (2018)

    Google Scholar 

  4. Chien, J.T., Wang, C.W.: Hierarchical and self-attended sequence autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4975–4986 (2021)

    Google Scholar 

  5. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. Adv. Neural. Inf. Process. Syst. 29, 64–72 (2016)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2674–2780 (2014)

    Google Scholar 

  7. Gregor, K., Besse, F., Jimenez Rezende, D., Danihelka, I., Wierstra, D.: Towards conceptual compression. Adv. Neural. Inf. Process. Syst. 29, 3549–3557 (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural. Inf. Process. Syst. 30, 6626–6637 (2017)

    Google Scholar 

  10. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2016)

    Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. Adv. Neural. Inf. Process. Syst. 29, 4743–4751 (2016)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  15. Lee, D., Kim, C., Kim, S., Cho, M., Han, W.S.: Autoregressive image generation using residual quantization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11523–11532 (2022)

    Google Scholar 

  16. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Lucas, J., Tucker, G., Grosse, R.B., Norouzi, M.: Don’t blame the ELBO! A linear VAE perspective on posterior collapse. Adv. Neural. Inf. Process. Syst. 32, 9408–9418 (2019)

    Google Scholar 

  18. Makhzani, A., Frey, B.: K-sparse autoencoders. arXiv preprint arXiv:1312.5663 (2013)

  19. Ravuri, S., Vinyals, O.: Classification accuracy score for conditional generative models. Adv. Neural. Inf. Process. Syst. 32, 12268–12279 (2019)

    Google Scholar 

  20. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. Adv. Neural. Inf. Process. Syst. 32, 14866–14876 (2019)

    Google Scholar 

  21. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 833–840 (2011)

    Google Scholar 

  22. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. Adv. Neural. Inf. Process. Syst. 29, 2234–2242 (2016)

    Google Scholar 

  23. Takida, Y., et al.: SQ-VAE: variational Bayes on discrete representation with self-annealed stochastic quantization. In: International Conference on Machine Learning, pp. 20987–21012 (2022)

    Google Scholar 

  24. Van Den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. Adv. Neural. Inf. Process. Syst. 30, 6306–6315 (2017)

    Google Scholar 

  25. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, C., Zheng, A., Wu, Z., Tong, C. (2023). TransVQ-VAE: Generating Diverse Images Using Hierarchical Representation Learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14256. Springer, Cham. https://doi.org/10.1007/978-3-031-44213-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44213-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44212-4

  • Online ISBN: 978-3-031-44213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics