Abstract
Heterogeneous data is a significant topic in today’s context, necessitating the development of AI tools. Logic programming is a powerful approach for extracting information from datasets, enabling the interpretation of natural language as logical rules.
This paper introduces a novel representation of logic normal programs, which include negated variables, using labeled hypergraphs. This representation provides a comprehensive characterization of the program, capturing all available information and relationships among variables in a specific hypergraph. Such characterization is highly advantageous, particularly for computing program consequences and models through hypergraph theory.
Partially supported by the 2014–2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in project PID2019-108991GB-I00, with the Ecological and Digital Transition Projects 2021 of the Ministry of Science and Innovation in project TED2021-129748B-I00, and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in project FEDER-UCA18-108612, and by the European Cooperation in Science & Technology (COST) Action CA1712.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd., Amsterdam (1985)
Cornejo, M.E., Lobo, D., Medina, J.: Characterizing fuzzy y-models in multi-adjoint normal logic programming. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Perfilieva, I., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS, vol. 855, pp. 541–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91479-4_45
Cornejo, M.E., Lobo, D., Medina, J.: Syntax and semantics of multi-adjoint normal logic programming. Fuzzy Sets Syst. 345, 41–62 (2018)
Cornejo, M.E., Lobo, D., Medina, J.: Extended multi-adjoint logic programming. Fuzzy Sets Syst. 388, 124–145 (2020)
Cornejo, M.E., Lobo, D., Medina, J.: Relating multi-adjoint normal logic programs to core fuzzy answer set programs from a semantical approach. Mathematics 8(6), 1–18 (2020). Paper 881
Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect information: applications and query procedure. J. Appl. Log. 5, 435–458 (2007)
Díaz-Moreno, J.C., Medina, J., Portillo, J.R.: Towards the use of hypergraphs in multi-adjoint logic programming. Stud. Comput. Intell. 796, 53–59 (2019)
Díaz-Moreno, J.C., Medina, J., Portillo, J.R.: Fuzzy logic programs as hypergraphs. Termination results. Fuzzy Sets Syst. 445, 22–42 (2022). Logic and Databases
Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)
Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2–3), 177–201 (1993)
Halpin, H., McNeill, F.: Discovering meaning on the go in large heterogenous data. Artif. Intell. Rev. 40, 107–126 (2013)
Julián-Iranzo, P., Moreno, G., Riaza, J.A.: Some properties of substitutions in the framework of similarity relations. Fuzzy Sets Syst. 465, 108510 (2023)
Julián-Iranzo, P., Sáenz-Pérez, F.: Bousi\(\sim \)prolog: design and implementation of a proximity-based fuzzy logic programming language. Expert Syst. Appl. 213, 118858 (2023)
Kulagin, K., Salikhov, M., Burnashev, R.: Designing an educational intelligent system with natural language processing based on fuzzy logic. In: 2023 International Russian Smart Industry Conference (SmartIndustryCon), pp. 690–694 (2023)
Madrid, N., Ojeda-Aciego, M.: On the existence and unicity of stable models in normal residuated logic programs. Int. J. Comput. Math. 89(3), 310–324 (2012)
Medina, J., Ojeda-Aciego, M., Vojtaš, P.: Multi-adjoint logic programming with continous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0_26
Medina, J., Torné-Zambrano, J.A.: Immediate consequences operator on generalized quantifiers. Fuzzy Sets Syst. 456, 72–91 (2022)
Mooney, R.J.: Inductive logic programming for natural language processing. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 1–22. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63494-0_45
Nakamura, K., Ando, T.: A taboo-not in open world assumption for a natural language based logic programming. In: 2022 IEEE International Conference on Big Data (Big Data), pp. 5140–5144 (2022)
Regaieg, R., Koubàa, M., Osei-Opoku, E., Aguili, T.: A two objective linear programming model for VM placement in heterogenous data centers. In: Boudriga, N., Alouini, M.-S., Rekhis, S., Sabir, E., Pollin, S. (eds.) UNet 2018. LNCS, vol. 11277, pp. 167–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02849-7_15
Ren, M., Zhang, Z., Zhang, J., Mora, L.: Understanding the use of heterogenous data in tackling urban flooding: an integrative literature review. Water 14(14), 2160 (2022)
Salazar, E., Gupta, G.: Proof-theoretic foundations of normal logic programs. In: Lopez-Garcia, P., Gallagher, J.P., Giacobazzi, R. (eds.) Analysis, Verification and Transformation for Declarative Programming and Intelligent Systems. Lecture Notes in Computer Science, vol. 13160, pp. 233–252. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31476-6_13
Scherr, S.A., Hupp, S., Elberzhager, F.: Establishing continuous app improvement by considering heterogenous data sources. Int. J. Interact. Mob. Technol. (iJIM) 15(10), 66–86 (2021)
Wachtel, A., Fuchß, D., Przybylla, M., Tichy, W.F.: Natural language data queries on multiple heterogenous data sources. In: Malizia, A., Valtolina, S., Morch, A., Serrano, A., Stratton, A. (eds.) IS-EUD 2019. LNCS, vol. 11553, pp. 174–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24781-2_13
Wang, Y., Eiter, T., Zhang, Y., Lin, F.: Witnesses for answer sets of logic programs. ACM Trans. Comput. Logic 24(2), 1–46 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Díaz-Moreno, J.C., Medina, J., Portillo, J.R. (2024). Hypergraphs in Logic Programming. In: Bouraoui, Z., Vesic, S. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2023. Lecture Notes in Computer Science(), vol 14294. Springer, Cham. https://doi.org/10.1007/978-3-031-45608-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-45608-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45607-7
Online ISBN: 978-3-031-45608-4
eBook Packages: Computer ScienceComputer Science (R0)