Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clustering of Learning Sub-models for Quality Prediction in a Resource-Efficient Tool Grinding Process

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2023)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 547 Accesses

Abstract

The prediction of workpiece quality in process planning, using machine learning models, is a common-researched topic. Until now, trained models were static and could not update themselves with new data. However, this aspect is crucial when considering the continuously changing manufacturing circumstances in regards to new process parameters, materials, and workpiece geometries. In addition, repeatedly training process models with an extended mixed dataset decreases the prediction quality due to the increased data divergence. This paper presents an approach to automatically generate sub-models, which maintain the prediction quality even if novel data is considered. The challenge is to define the amount and content of these sub-models through clustering. Tool grinding experiments will be conducted with different process parameters, materials, and workpiece geometries in order to obtain a divergent dataset. Subsequently, cluster approaches are compared to obtain dynamic growing models, which enable optimized planning for a more resource efficient process. Finally, the method will be generalized in order to ensure a process-independent usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden (14. Aufl.). Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-46076-4

  • Brecher, C., Ochel, J., Lohrmann, V., Fey, M.: Maschinelles Lernen zur Prädiktion der Bauteilqualität. Zeitschrift für wirtschaftlichen Fabrikbetrieb 115(11), 834–837 (2020)

    Article  Google Scholar 

  • Brecher, C., Lohrmann, V., Wiesch, M., Fey, M.: Clustering zur Bestimmung von Werkzeugverschleiß. Zeitschrift für wirtschaftlichen Fabrikbetrieb 117(4), 218–223 (2022)

    Article  Google Scholar 

  • Brinksmeier, E., et al.: Advances in modeling and simulation of grinding processes. CIRP Ann. 55(2), 667–696 (2006)

    Article  Google Scholar 

  • Deichmueller, M., et al.: Determination of static and dynamic deflections in tool grinding using a dexel-based material removal simulation. In: CIRP 2nd International Conference Process Machine Interactions 2010. Vancouver, Canada (2010)

    Google Scholar 

  • Denkena, B., Dittrich, M.-A., Böß, V., Wichmann, M., Friebe, S.: Self-optimizing process planning for helical flute grinding. Prod. Eng. Res. Devel. 13(5), 599–606 (2019)

    Article  Google Scholar 

  • Denkena, B., Dittrich, M.-A., Lindauer, M., Mainka, J., Stürenburg, L.: Using AutoML to optimize shape error prediction in milling processes. MIC Procedia 20(1), 160–165 (2020)

    Google Scholar 

  • Dittrich, M.-A., Uhlich, F.: Self-optimizing compensation of surface deviations in 5-axis ball-end milling based on an enhanced description of cutting conditions. CIRP J. Manuf. Sci. Technol. 31(1), 224–232 (2020)

    Article  Google Scholar 

  • Dittrich, M.-A.: Autonome Werkzeugmaschinen - Definition, Elemente und technische Integration. Habilitation, Gottfried Wilhelm Leibniz Universität Hannover (2021)

    Google Scholar 

  • Frades, I., Matthiesen, R.: Overview on techniques in cluster analysis. In: Bioinformatics Methods in Clinical Research, pp. 81–107. Humana Press, Totowa, USA (2010)

    Google Scholar 

  • Königs, M., Wellmann, F., Wiesch, M., Epple, A., Brecher, C.: A scalable, hybrid learning approach to process-parallel estimation of cutting forces in milling applications. In: WGP-Jahreskongress Aachen 2017, vol. 7, pp. 425–432. Apprimus, Aachen (2017)

    Google Scholar 

  • Krüger, J., Fleischer, J., Franke, J., Groche, P.: WGP-Standpunkt KI in der Produktion. Wissenschaftliche Gesellschaft für Produktionstechnik WGP e.V. (2019)

    Google Scholar 

  • Möhring, H.-C., Wiederkehr, P., Erkorkmaz, K., Kakinuma, Y.: Self-optimizing machining systems. CIRP Ann. 69(2), 740–763 (2020)

    Google Scholar 

  • Myttenaere, A.D., Golden, B., Le Grand, B., Rossi, F.: Mean Absolute Percentage Error for regression models. Neurocomputing 192, 38–48 (2016)

    Google Scholar 

  • Ochel, J., Fey, M., Brecher, C.: Semantically meaningful segmentation of milling process data. In: Behrens, B.A., Brosius, A., Drossel, W.G., Hintze, W., Ihlenfeldt, S., Nyhuis, P. (eds.) Production at the Leading Edge of Technology, pp. 319–327. WGP 2021. LNPE. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-78424-9_36

  • Uhlich, F.: Lernende Prozesssimulation für die Prognose und Kompensaiton von Formabweichungen in der Einzelteilfertigung. Dr.-Ing. Diss., Gottfried Wilhelm Leibniz Universität Hannover (2022)

    Google Scholar 

  • Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the German Research Foundation (DFG) for funding the project LearnWZS - Learning process adaptation for tool grinding (number 445811009), which enables this investigation. Furthermore, the authors thank the Sieglinde-Vollmer Foundation for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wulf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denkena, B., Wichmann, M., Wulf, M. (2024). Clustering of Learning Sub-models for Quality Prediction in a Resource-Efficient Tool Grinding Process. In: Bauernhansl, T., Verl, A., Liewald, M., Möhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2023. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47394-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47394-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47393-7

  • Online ISBN: 978-3-031-47394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics