Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Model to Support the Prediction of Indicators in the Diagnosis and Intervention of Autism Spectrum Disorder

  • Conference paper
  • First Online:
Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023) (UCAmI 2023)

Abstract

Autism Spectrum Disorder (ASD) is a developmental disability primarily characterized by challenges in social interaction and communication. Due to the unknown etiology of ASD, numerous computational psychiatry research studies have been carried out to identify pertinent features and uncover hidden correlations to detect this type of disability at an early stage. The aim of this ongoing project is to present the initial tests carried out on autistic children by analysing their conversations or writings to assess their social skills in order to find indicators for the most personalised intervention possible. This model would consist of the most advanced machine learning algorithms and Natural Language Processing techniques (e.g. Transformers or ChatGPT). The paper concludes by presenting a case study that utilized autism data to verify the efficacy of our proposed model, demonstrating remarkably promising findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vargas, A.L., Ahufinger, N., Igualada, A.J., Torrent, M.S.: Descripción del cambio del tel al tdl en contexto angloparlante. Revista de investigación en Logopedia 11(1), 9–20 (2021)

    Google Scholar 

  2. RCSLT: Royal College of Speech & Language Therapists. Briefing paper on language disorder with a specific focus on developmental language disorder (2017)

    Google Scholar 

  3. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14, 1–10 (2015)

    Article  Google Scholar 

  4. Hyde, K.K., et al.: Applications of supervised machine learning in autism spectrum disorder research: a review. Rev. J. Autism Dev. Disord. 6, 128–146 (2019)

    Article  Google Scholar 

  5. Mak, K.K., Lee, K., Park, C.: Applications of machine learning in addiction studies: a systematic review. Psychiatry Res. 275, 53–60 (2019)

    Article  Google Scholar 

  6. Raj, S., Masood, S.: Analysis and detection of autism spectrum disorder using machine learning techniques. Procedia Comput. Sci. 167, 994–1004 (2020)

    Article  Google Scholar 

  7. Kosmicki, J., Sochat, V., Duda, M., Wall, D.: Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl. Psychiatry 5(2), e514 (2015)

    Article  Google Scholar 

  8. Bozhilova, N., et al.: Profiles of autism characteristics in thirteen genetic syndromes: a machine learning approach. Mol. Autism 14(1), 3 (2023)

    Article  Google Scholar 

  9. Li, B., Sharma, A., Meng, J., Purushwalkam, S., Gowen, E.: Applying machine learning to identify autistic adults using imitation: an exploratory study. PLoS ONE 12(8), e0182652 (2017)

    Article  Google Scholar 

  10. Cavus, N., et al.: A systematic literature review on the application of machine-learning models in behavioral assessment of autism spectrum disorder. J. Personalized Med. 11(4), 299 (2021)

    Article  Google Scholar 

  11. Peral, J., Gil, D., Rotbei, S., Amador, S., Guerrero, M., Moradi, H.: A machine learning and integration based architecture for cognitive disorder detection used for early autism screening. Electronics 9(3), 516 (2020)

    Article  Google Scholar 

  12. del Mar Guillén, M., Amador, S., Peral, J., Gil, D., Elouali, A.: Overcoming the lack of data to improve prediction and treatment of individuals with autistic spectrum disorder and attention deficit hyperactivity disorder. In: Bravo, J., Ochoa, S., Favela, J. (eds.) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence, UCAmI 2022. LNNS, vol. 594, pp. 760–771. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-21333-5_75

  13. Zhang, J., Feng, F., Han, T., et al.: Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cogn. Comput. 15, 1106–1117 (2023). https://doi.org/10.1007/s12559-021-09981-z

    Article  Google Scholar 

  14. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  15. Chi, N.A., et al.: Classifying autism from crowdsourced semistructured speech recordings: machine learning model comparison study. JMIR Pediatr. Parenting 5(2), e35406 (2022)

    Article  Google Scholar 

  16. Lee, J.H., Lee, G.W., Bong, G., Yoo, H.J., Kim, H.K.: Deep-learning-based detection of infants with autism spectrum disorder using auto-encoder feature representation. Sensors 20(23), 6762 (2020)

    Article  Google Scholar 

  17. Cho, S., Liberman, M., Ryant, N., Cola, M., Schultz, R.T., Parish-Morris, J.: Automatic detection of autism spectrum disorder in children using acoustic and text features from brief natural conversations. In: Interspeech, pp. 2513–2517 (2019)

    Google Scholar 

  18. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)

    Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the BALLADEER project (PROMETEO/2021/088) and the project NL4DISMIS (CIPROM/2021/21) from the Consellería Valenciana (Generalitat Valenciana). Furthermore, it has been partially funded by the AETHER-UA (PID2020-112540RB-C43) project from the MCIN and the R &D projects “CORTEX” (PID2021-123956OB-I00), funded by MCIN/ AEI/10.13039/501100011033/. This result has been supported through the Spanish Government by the FEDER project PID2021-127275OB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, V., Mondéjar, T., Ferrández, A., Peral, J., Gil, D., Mora, H. (2023). A Model to Support the Prediction of Indicators in the Diagnosis and Intervention of Autism Spectrum Disorder. In: Bravo, J., Urzáiz, G. (eds) Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023). UCAmI 2023. Lecture Notes in Networks and Systems, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-031-48642-5_7

Download citation

Publish with us

Policies and ethics