Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs and General Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14422))

Included in the following conference series:

  • 491 Accesses

Abstract

In the Cluster Vertex Deletion problem, we are given a graph G and an integer k, and the goal is to determine whether we can delete at most k vertices from G to make the remaining graph a cluster, i.e., a graph with each connected component being a complete graph. In this paper, we show that Cluster Vertex Deletion can be solved in \(O^*(1.7549^k)\) time, improving the previous result of \(O^*(1.811^k)\). To obtain this result, one crucial step is to show Cluster Vertex Deletion on graphs of maximum degree at most 4 can be solved in \(O^*(1.7485^k)\) time. After this, we know that the graph will always have a vertex of degree at least 5. Then by adopting the previous method of automated generation of searching trees, we can get the result on general graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3/4), 281–297 (1999)

    Article  Google Scholar 

  3. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Disc. Algor. 16, 79–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  8. Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 98–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_8

    Chapter  MATH  Google Scholar 

  9. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 764–775. ACM (2016)

    Google Scholar 

  10. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tsur, D.: Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci. 783, 1–8 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst. 65(2), 323–343 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsur, D.: Cluster deletion revisited. Inf. Process. Lett. 173, 106171 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. PhD thesis, Linköping University, Sweden (2007)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to all the anonymous reviewers for fruitful and insightful comments to improve the presentation of the paper. The work is supported by the National Natural Science Foundation of China, under the grants 62372095 and 61972070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangyi Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, K., Xiao, M., Yang, B. (2024). Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs and General Graphs. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14422. Springer, Cham. https://doi.org/10.1007/978-3-031-49190-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49190-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49189-4

  • Online ISBN: 978-3-031-49190-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics