Abstract
In the Cluster Vertex Deletion problem, we are given a graph G and an integer k, and the goal is to determine whether we can delete at most k vertices from G to make the remaining graph a cluster, i.e., a graph with each connected component being a complete graph. In this paper, we show that Cluster Vertex Deletion can be solved in \(O^*(1.7549^k)\) time, improving the previous result of \(O^*(1.811^k)\). To obtain this result, one crucial step is to show Cluster Vertex Deletion on graphs of maximum degree at most 4 can be solved in \(O^*(1.7485^k)\) time. After this, we know that the graph will always have a vertex of degree at least 5. Then by adopting the previous method of automated generation of searching trees, we can get the result on general graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3/4), 281–297 (1999)
Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Disc. Algor. 16, 79–89 (2012)
Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)
Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)
Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 98–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_8
Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 764–775. ACM (2016)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)
Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)
Tsur, D.: Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci. 783, 1–8 (2019)
Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst. 65(2), 323–343 (2021)
Tsur, D.: Cluster deletion revisited. Inf. Process. Lett. 173, 106171 (2022)
Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. PhD thesis, Linköping University, Sweden (2007)
Acknowledgments
The author is grateful to all the anonymous reviewers for fruitful and insightful comments to improve the presentation of the paper. The work is supported by the National Natural Science Foundation of China, under the grants 62372095 and 61972070.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, K., Xiao, M., Yang, B. (2024). Parameterized Algorithms for Cluster Vertex Deletion on Degree-4 Graphs and General Graphs. In: Wu, W., Tong, G. (eds) Computing and Combinatorics. COCOON 2023. Lecture Notes in Computer Science, vol 14422. Springer, Cham. https://doi.org/10.1007/978-3-031-49190-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-49190-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49189-4
Online ISBN: 978-3-031-49190-0
eBook Packages: Computer ScienceComputer Science (R0)