Abstract
This paper describes a novel approach for generating accurate floor plans and 3D models of building interiors using scanned mesh data. Unlike previous methods, which begin with a high resolution point cloud from a laser range-finder, our approach begins with triangle mesh data, as from a Microsoft HoloLens. It generates two types of floor plans, a “pen-and-ink” style that preserves details and a drafting-style that reduces clutter. It processes the 3D model for use in applications by aligning it with coordinate axes, annotating important objects, dividing it into stories, and removing the ceiling. Its performance is evaluated on commercial and residential buildings, with experiments to assess quality and dimensional accuracy. Our approach demonstrates promising potential for automatic digitization and orientation of scanned mesh data, enabling floor plan and 3D model generation in various applications such as navigation, interior design, furniture placement, facilities management, building construction, and HVAC design.
R. Sharma—Worked on this research work during his internship at Palo Alto Research Center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adan, A., Huber, D.: 3D reconstruction of interior wall surfaces under occlusion and clutter. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 275–281 (2011). https://doi.org/10.1109/3DIMPVT.2011.42
Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., Maierhofer, S.: O-snap: optimization-based snapping for modeling architecture. ACM Trans. Graph. 32(1) (2013). https://doi.org/10.1145/2421636.2421642
Budroni, A., Boehm, J.: Automated 3D reconstruction of interiors from point clouds. Int. J. Archit. Comput. 8(1), 55–73 (2010). https://doi.org/10.1260/1478-0771.8.1.55
Cabral, R.S., Furukawa, Y.: Piecewise planar and compact floorplan reconstruction from images. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 628–635 (2014)
Cai, R., Li, H., Xie, J., Jin, X.: Accurate floorplan reconstruction using geometric priors. Comput. Graph. 102, 360369 (2022). https://doi.org/10.1016/j.cag.2021.10.011
Chen, J., Liu, C., Wu, J., Furukawa, Y.: Floor-SP: inverse cad for floorplans by sequential room-wise shortest path. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Chen, N., Lu, Z., Yu, X., Yang, L., Xu, P., Fan, Y.: Augmented reality-based home interaction layout and evaluation. In: Magnenat-Thalmann, N., et al. (eds.) Advances in Computer Graphics. CGI 2022. LNCS, vol. 13443, pp. 395–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23473-6_31
Dasgupta, S., Fang, K., Chen, K., Savarese, S.: Delay: robust spatial layout estimation for cluttered indoor scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 616–624 (2016). https://doi.org/10.1109/CVPR.2016.73
Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 80–87 (2009). https://doi.org/10.1109/ICCV.2009.5459145
Gao, R., et al.: Jigsaw: indoor floor plan reconstruction via mobile crowdsensing. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 249–260. MobiCom ’14, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2639108.2639134
Hsiao, C.W., Sun, C., Sun, M., Chen, H.T.: Flat2layout: flat representation for estimating layout of general room types. ArXiv abs/1905.12571 (2019)
Ikehata, S., Yang, H., Furukawa, Y.: Structured indoor modeling. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1323–1331 (2015). https://doi.org/10.1109/ICCV.2015.156
Kruzhilov, I., Romanov, M., Babichev, D., Konushin, A.: Double refinement network for room layout estimation. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 557–568. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_39
Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: RoomNet: end-to-end room layout estimation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4875–4884 (2017)
Liu, C., Wu, J., Furukawa, Y.: FloorNet: a unified framework for floorplan reconstruction from 3D scans. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_13
Liu, H., Yang, Y.L., AlHalawani, S., Mitra, N.J.: Constraint-aware interior layout exploration for precast concrete-based buildings. Vis. Comput. (CGI Special Issue) 29, 663–673 (2013)
McNeel, R., et al.: Rhinoceros 3D, Version 6.0. Robert McNeel & Associates, Seattle, WA (2010)
Microsoft: Spatial mapping (2022). https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping
Monszpart, A., Mellado, N., Brostow, G.J., Mitra, N.J.: Rapter: rebuilding man-made scenes with regular arrangements of planes. ACM Trans. Graph. 34(4) (2015). https://doi.org/10.1145/2766995
Mura, C., Mattausch, O., Pajarola, R.: Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements. Comput. Graph. Forum 35(7), 179–188 (2016). https://doi.org/10.1111/cgf.13015
Murali, S., Speciale, P., Oswald, M.R., Pollefeys, M.: Indoor Scan2BIM: building information models of house interiors. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6126–6133 (2017). https://doi.org/10.1109/IROS.2017.8206513
Okorn, B., Xiong, X., Akinci, B.: Toward automated modeling of floor plans. In: Proceedings of the Symposium on 3D Data Processing, Visualization and Transmission, vol. 2 (2010)
Pintore, G., Gobbetti, E.: Effective mobile mapping of multi-room indoor structures. Vis. Comput. 30(6–8), 707–716 (2014)
Pintore, G., Mura, C., Ganovelli, F., Fuentes-Perez, L.J., Pajarola, R., Gobbetti, E.: State-of-the-art in automatic 3D reconstruction of structured indoor environments. Comput. Graph. Forum (2020). https://doi.org/10.1111/cgf.14021
Ramakrishnan, S.K., et al.: Habitat-matterport 3D dataset (HM3d): 1000 large-scale 3D environments for embodied AI. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021). https://openreview.net/forum?id=-v4OuqNs5P
Turner, E., Zakhor, A.: Watertight as-built architectural floor plans generated from laser range data. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission, pp. 316–323 (2012). https://doi.org/10.1109/3DIMPVT.2012.80
Weinmann, M., Wursthorn, S., Weinmann, M., Hübner, P.: Efficient 3D mapping and modelling of indoor scenes with the microsoft hololens: a survey. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 89(4), 319–333 (2021)
Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325–337 (2013). https://doi.org/10.1016/j.autcon.2012.10.006
Zhang, J., Kan, C., Schwing, A.G., Urtasun, R.: Estimating the 3D layout of indoor scenes and its clutter from depth sensors. In: 2013 IEEE International Conference on Computer Vision, pp. 1273–1280 (2013). https://doi.org/10.1109/ICCV.2013.161
Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3D room layout from a single RGB image. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2051–2059. IEEE Computer Society, Los Alamitos, CA, USA, June 2018. https://doi.org/10.1109/CVPR.2018.00219
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, R., Bier, E., Nelson, L., Bhandari, M., Kunwar, N. (2024). Automatic Digitization and Orientation of Scanned Mesh Data for Floor Plan and 3D Model Generation. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-50072-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50071-8
Online ISBN: 978-3-031-50072-5
eBook Packages: Computer ScienceComputer Science (R0)