Abstract
Mesh representation of medical imaging isosurfaces are essential for medical analysis. These representations are typically obtained using mesh extraction methods to segment 3D volumes. However, the meshes extracted from such methods often suffer from undesired staircase artefacts. In this paper, we evaluate the existing mesh deformation methods that deform a template mesh to desired shapes. We evaluate two variants of such method on three datasets of varying topological complexity. Our objective is to demonstrate that, despite the mesh deformation methods having their limitations, they avoid the generation of staircase artefacts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Meyer-Spradow, J., et al.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graphics Appl. 29(6), 6–13 (2009)
Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2mesh: 3d mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30
Li, W., Hahn, J.K.: Efficient ray casting polygonized isosurface of binary volumes. Vis. Comput. 37(12), 3139–3149 (2021). https://doi.org/10.1007/s00371-021-02302-3
Kong, F., Shadden, S.C.: Whole heart mesh generation for image-based computational simulations by learning free-from deformations. In: de Bruijne, Marleen, et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part IV, pp. 550–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_53
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM siggraph Comput. Graph. 21(4), 163–169 (1987)
Moench, T., et al.: Context-aware mesh smoothing for biomedical applications. Comput. Graph. 35(4), 755–767 (2011)
Wang, N., Zhang, Y., Li, Z., Yanwei, F., Liu, W., Jiang, Y.-G.: Pixel2mesh: generating 3d mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4
Wen, C., et al.: Pixel2mesh++: multi-view 3D mesh generation via deformation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)
Liu, P., et al.: Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. Int. J. Comput. Assist. Radiol. Surg. 16, 749–756 (2021). https://doi.org/10.1007/s11548-021-02363-8
Kavur, A.E., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)
Rister, B., et al.: CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 7(1), 381 (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Zhao, H., et al.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, Danail, et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Isensee, F., et al.: NnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE (2016)
Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Chen, Z., Zhang, H.: Neural marching cubes. ACM Trans. Graph. (TOG) 40(6), 1–15 (2021)
Liu, R., et al.: TMM-Nets: transferred multi-to mono-modal generation for lupus retinopathy diagnosis. IEEE Trans. Med. Imaging 42(4), 1083–1094 (2022)
Terzopoulos, D., Fleischer, K.: Deformable models. Vis. Comput. 4(6), 306–331 (1988). https://doi.org/10.1007/BF01908877
Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36(1), 91–123 (1988)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570
Berger, M.-O.: Snake growing. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 570–572. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0014909
Scarselli, F., et al.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Lebrat, L., et al.: Corticalflow: a diffeomorphic mesh transformer network for cortical surface reconstruction. Adv. Neural. Inf. Process. Syst. 34, 29491–29505 (2021)
Bongratz, F., et al.: Vox2Cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: PialNN: a fast deep learning framework for cortical pial surface reconstruction. In: Abdulkadir, Ahmed, et al. (eds.) Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings, pp. 73–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_8
Kong, Fanwei, Shadden, Shawn C.: Learning whole heart mesh generation from patient images for computational simulations. IEEE Trans. Med. Imaging 42(2), 533–545 (2022)
Yang, J., et al.: ImplicitAtlas: learning deformable shape templates in medical imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
McInemey, T., Terzopoulos, D.: Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Trans. Med. Imaging 18(10), 840–850 (1999)
Sapiro, G., Kimmel, R., Caselles, V.: Object detection and measurements in medical images via geodesic deformable contours. In: Vision Geometry IV. SPIE (1995)
McInerney, T., Terzopoulos, D.: Topologically adaptable snakes. In: Proceedings of IEEE International Conference on Computer Vision. IEEE (1995)
Cignoni, P., et al.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, Salerno, Italy (2008)
Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)
Gerig, G., Jomier, M., Chakos, M.: Valmet: a new validation tool for assessing and improving 3D object segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516–523. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_62
Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. Image Process. 34(3), 344–371 (1986)
Acknowledgments
This research was supported by ARC DP200103748.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jin, G., Jung, Y., Kim, J. (2024). Challenges and Constraints in Deformation-Based Medical Mesh Representation. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14498. Springer, Cham. https://doi.org/10.1007/978-3-031-50078-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-50078-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50077-0
Online ISBN: 978-3-031-50078-7
eBook Packages: Computer ScienceComputer Science (R0)