Abstract
Collaboration mining develops discovery, conformance checking, and enhancement techniques for collaboration processes. The collaboration process model is key to represent the discovery result. As for process mining in general, Petri Net classes are candidates for collaboration process models due to their analytical power. However, a standard model class to represent collaboration processes is lacking due to the heterogeneity of collaboration and, thus, of collaboration mining techniques. Collaboration heterogeneity requires to cover, for example, intra-organizational collaborations as well as choreographies that span a process across multiple organizations. A standard collaboration model class would advance collaboration mining by focusing discovery through a common target model, supporting comparison, and enabling flexible mining pipelines. To find a standard model class, we aim at capturing collaboration heterogeneity in a meta model, assess Petri net classes as candidates for collaboration process models through the meta model, and derive design guidelines for the collaboration discovery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Many alternative modelling languages can be transformed into Petri nets [40].
References
van der Aalst, W.M.P.: On the representational bias in process mining. In: 2011 IEEE WETICE, pp. 2–7, June 2011
van der Aalst, W.M.P.: Modeling and analyzing interorganizational workflows. In: Proceedings 1998 ACSD, pp. 262–272 (1998)
van der Aalst, W.M.P.: Interorganizational workflows: an approach based on message sequence charts and petri nets. Syst. Anal. Model. Simul. 34, 335–367 (1999)
van der Aalst, W.M.P.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)
van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam. Inform. 175(1–4), 1–40 (2020)
van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der Werf, J.M.: Compositional service trees. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5_17
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational workflows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 140–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45341-5_10
Augusto, A., Conforti, R., Dumas, M., Rosa et al., M.L.: Automated discovery of process models from event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)
Barenholz, D., Montali, M., Polyvyanyy, A., Reijers, H.A., et al., H.A.: There and back again. In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. LNCS, vol. 13929, pp. 37–58. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33620-1_3
Basten, T., van Der Aalst, W.: Inheritance of behavior. J. Log. Algebraic Program. 47(2), 47–145 (2001)
Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based failure prediction in distributed business processes. Inf. Syst. 81, 220–235 (2019)
Chu, X.N., Tso, S.K., Zhang, W.J., Li, Q.: Partnership synthesis for virtual enterprises. Int. J. Adv. Manuf. Technol. 19(5), 384–391 (2002)
Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A technique for collaboration discovery. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds.) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022. LNBIP, vol. 450, pp. 63–78. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07475-2_5
Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_22
Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf. Syst. 36(2), 292–312 (2011)
Fahland, D.: Describing behavior of processes with many-to-many interactions. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1
Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and formalization of instance-spanning constraints in process-driven applications. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 348–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_20
Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in process choreographies: design and implementation of propagation algorithms. Inf. Syst. 49, 1–24 (2015)
Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance in collaborative processes. In: 2015 IEEE SCC, pp. 162–169, June 2015
Fettke, P., Reisig, W.: Systems Mining with Heraklit: The Next Step, June 2022. arXiv:2202.01289 [cs]
Gaaloul, W., Baïna, K., Godart, C.: Log-based mining techniques applied to web service composition reengineering. Serv. Oriented Comput. Appl. 2(2), 93–110 (2008)
Garcia, E., Giret, A., Botti, V.: Designing normative open virtual enterprises. Enterp. Inf. Syst. 10(3), 303–324 (2016)
Grefen, P., Mehandjiev, N., Kouvas, G., Weichhart et al., G.: Dynamic business network process management in instant virtual enterprises. Comput. Ind. 60(2), 86–103 (2009)
Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture and implementation. ITP New Media (1996)
Jensen, K.: Coloured petri nets and the invariant-method. Theor. Comput. Sci. 14(3), 317–336 (1981)
Köhler, M., Rölke, H.: Properties of object petri nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 278–297. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-4_16
Kwantes, P., Kleijn, J.: Distributed synthesis of asynchronously communicating distributed process models. In: Koutny, M., Kordon, F., Moldt, D. (eds.) Transactions on Petri Nets and Other Models of Concurrency XVI. LNCS, vol. 13220, pp. 49–72. Springer, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-662-65303-6_3
Kwantes, P.M., Kleijn, J.: On the synthesis of industry level process models from enterprise level process models. In: ATAED@ Petri Nets/ACSD, pp. 6–22 (2018)
Leemans, S.J.J., van Zelst, S.J., Lu, X.: Partial-order-based process mining: a survey and outlook. Knowl. Inf. Syst. (2022)
Liu, C., Li, H., Zeng, Q., Lu et al., T.: cross-organization emergency response process mining: an approach based on petri nets. Math. Probl. Eng. 2020, e8836007 (2020)
Liu, C., Li, H., Zhang, S., Cheng et al., L.: Cross-department collaborative healthcare process model discovery from event logs. IEEE Trans. Autom. Sci. Eng. 20(3), 2115–2125 (2023)
Mahulea, C., Mahulea, L., García Soriano, J.M., Colom, J.M.: Modular Petri net modeling of healthcare systems. Flex. Serv. Manuf. J. 30(1), 329–357 (2018)
Mangler, J., Ehrendorfer, M.: XES Chess Pieces Production, May 2023. https://zenodo.org/record/7477845
Mangler, J., Rinderle-Ma, S.: Cloud Process Execution Engine: Architecture and Interfaces, September 2022. arXiv:2208.12214 [cs]
Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data exchange in process choreographies. Inf. Syst. 53, 296–329 (2015)
Nesterov, R., Bernardinello, L., Lomazova, I., Pomello, L.: Discovering architecture-aware and sound process models of multi-agent systems: a compositional approach. Softw. Syst. Model. 22(1), 351–375 (2023)
Peterson, J.L.: Petri Nets. ACM Comput. Surv. 9(3), 223–252 (1977)
Petri, C.A.: Kommunikation mit automaten (1962)
Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information systems modeling: language, verification, and tool support. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 194–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_13
Reisig, W.: Composition of component models - a key to construct big systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 171–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_11
Rinderle-Ma, S., Reichert, M., Jurisch, M.: Equivalence of web services in process-aware service compositions. In: 2009 IEEE ICWS, pp. 501–508, July 2009
Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)
Schulte, S., Hoenisch, P., Hochreiner, C., Dustdar et al., S.: Towards process support for cloud manufacturing. In: 2014 IEEE 18th EDOC, pp. 142–149, September 2014
Stroiński, A., Dwornikowski, D., Brzeziński, J.: A distributed discovery of communicating resource systems models. IEEE Trans. Serv. Comput. 12(2), 172–185 (2019)
Tan, W., Xu, W., Yang, F., Xu, L., et al.: A framework for service enterprise workflow simulation with multi-agents cooperation. Enterp. Inf. Syst. 7(4), 523–542 (2013)
Tour, A., Polyvyanyy, A., Kalenkova, A.: Agent system mining: vision, benefits, and challenges. IEEE Access 9, 99480–99494 (2021)
Tour, A., Polyvyanyy, A., Kalenkova, A., Senderovich, A.: Agent Miner: An Algorithm for Discovering Agent Systems from Event Data, July 2023. arXiv:2212.01454
Valk, R.: On Processes of Object Petri Nets (1996)
van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17945-3_13
van der Werf, J.M.E.M., Polyvyanyy, A., van Wensveen, B.R., Brinkhuis et al., M.: All that glitters is not gold: Four maturity stages of process discovery algorithms. Inf. Syst. 114, 102155 (2023)
Winter, K., Rinderle-Ma, S.: Defining instance spanning constraint patterns for business processes based on proclets. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 149–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_11
Zeng, Q., Duan, H., Liu, C.: Top-down process mining from multi-source running logs based on refinement of petri nets. IEEE Access 8, 61355–61369 (2020)
Zeng, Q., Lu, F., Liu, C., Duan, H., et al.: Modeling and verification for cross-department collaborative business processes using extended petri nets. IEEE Trans. Syst. Man Cybern.: Syst. 45(2), 349–362 (2015)
Zeng, Q., Sun, S., Duan, H., Liu, C., et al.: Cross-organizational collaborative workflow mining from a multi-source log. Decis. Support Syst. 54, 1280–1301 (2013)
Acknowledgements
This work has been partly funded by the Austrian Research Promotion Agency (FFG) via the “Austrian Competence Center for Digital Production” (CDP) under the contract number 854187.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Benzin, JV., Rinderle-Ma, S. (2024). Petri Net Classes for Collaboration Mining: Assessment and Design Guidelines. In: De Smedt, J., Soffer, P. (eds) Process Mining Workshops. ICPM 2023. Lecture Notes in Business Information Processing, vol 503. Springer, Cham. https://doi.org/10.1007/978-3-031-56107-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-56107-8_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56106-1
Online ISBN: 978-3-031-56107-8
eBook Packages: Computer ScienceComputer Science (R0)