Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Partitioning Algorithms: A Comparative Study

  • Conference paper
  • First Online:
ITNG 2024: 21st International Conference on Information Technology-New Generations (ITNG 2024)

Abstract

One of the classic problems related to graphs is partitioning their vertices into subsets, consisting of composing groups with high connectivity. The graph partitioning problem is of interest since the amount of data generated today is gigantic, and the importance of determining groups is essential for making strategic decisions in several areas. This paper compares the main graph partitioning methods found in the literature, considering the minimum cut criteria and load balancing factors in different types of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Battiti, A. Bertossi, Differential greedy for the 0-1 equicut problem, in Proceedings of the DIMACS Workshop on Network Design: Connectivity and Facilities Location (1997) , pp. 3–21

    Google Scholar 

  2. R. Battiti, A.A. Bertossi, Greedy, prohibition, and reactive heuristics for graph partitioning. IEEE Trans. Comput. 48(4), 361–385 (1999)

    Article  Google Scholar 

  3. V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008)

    Google Scholar 

  4. Ü. Çatalyürek, K. Devine, M. Faraj, L. Gottesbüren, T. Heuer, H. Meyerhenke, P. Sanders, S. Schlag, C. Schulz, D. Seemaier et al., More recent advances in (hyper) graph partitioning. ACM Comput. Surv. 55(12), 1–38 (2023)

    Article  Google Scholar 

  5. T.F. Chan, P. Ciarlet Jr., W. Szeto, On the optimality of the median cut spectral bisection graph partitioning method. SIAM J. Sci. Comput. 18(3), 943–948 (1997)

    Article  MathSciNet  Google Scholar 

  6. I.A. Ebeid, J.R. Talburt, M.A.S. Siddique, Graph-based hierarchical record clustering for unsupervised entity resolution, in 19th ITNG (2022), pp. 107–118

    Google Scholar 

  7. J. Edmonds, Matroids and the greedy algorithm. Math. Program. 1(1), 127–136 (1971)

    Article  MathSciNet  Google Scholar 

  8. C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network partitions, in Design Automation, 1982. 19th Conference on (IEEE, 1982), pp. 175–181

    Google Scholar 

  9. M. Hajiaghayi, T. Johnson, M.R. Khani, B. Saha, Hierarchical graph partitioning, in Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (2014), pp. 51–60

    Google Scholar 

  10. P. Hansen, M. Delattre, Complete-link cluster analysis by graph coloring. J. Am. Stat. Assoc. 73(362), 397–403 (1978)

    Article  Google Scholar 

  11. D. Hausmann, B. Korte, K-greedy algorithms for independence systems. Z. Oper. Res. 22(1), 219–228 (1978)

    MathSciNet  Google Scholar 

  12. B. Hendrickson, R.W. Leland, A multi-level algorithm for partitioning graphs. SC 95, 28 (1995)

    Google Scholar 

  13. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data (Prentice-Hall, 1988)

    Google Scholar 

  14. G. Karypis, V. Kumar, Multilevel graph partitioning schemes, in ICPP (3) (1995), pp. 113–122

    Google Scholar 

  15. B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  16. A.A. Khan, M.U. Khan, M. Iqbal, Multilevel graph partitioning scheme to solve traveling salesman problem, in 9th ITNG (2012), pp. 458–463

    Google Scholar 

  17. N. Meghanathan, Complex network analysis of the us marine highway network, in 20th ITNG (2023) , pp. 437–443

    Google Scholar 

  18. L.A. Neumann, E. Seraphim, O.A. Carpinteiro, E.M. Moreira, Participatory modeling: A new approach to model graph-oriented databases, in 19th ITNG (2022), pp. 97–106

    Google Scholar 

  19. A.Y. Ng, M.I. Jordan, Y. Weiss et al., On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  20. A.T. Oliveira, A.D. Souza, E.M. Moreira, E. Seraphim, Mapping and conversion between relational and graph databases models: A systematic literature review, in 17th ITNG (2020), pp. 539–543

    Google Scholar 

  21. F. Pellegrini, A parallelisable multi-level banded diffusion scheme for computing balanced partitions with smooth boundaries, in European Conference on Parallel Processing (Springer, 2007), pp. 195–204

    Google Scholar 

  22. A. Pothen, H.D. Simon, K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  Google Scholar 

  23. R. Sibson, Slink: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)

    Article  MathSciNet  Google Scholar 

  24. D.A. Spielmat, S.H. Teng, Spectral partitioning works: Planar graphs and finite element meshes, in Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on (1996), pp. 96–105

    Google Scholar 

  25. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmilson M. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siqueira, R.M.S., Alves, A.D., Carpinteiro, O.A.O., Moreira, E.M. (2024). Graph Partitioning Algorithms: A Comparative Study. In: Latifi, S. (eds) ITNG 2024: 21st International Conference on Information Technology-New Generations. ITNG 2024. Advances in Intelligent Systems and Computing, vol 1456. Springer, Cham. https://doi.org/10.1007/978-3-031-56599-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56599-1_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56598-4

  • Online ISBN: 978-3-031-56599-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics