Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Guide to Re-implementing Agent-Based Models: Experiences from the HUMAT Model

  • Conference paper
  • First Online:
Advances in Social Simulation (ESSA 2023)

Abstract

Replicating existing agent-based models poses significant challenges, particularly for those new to the field. This article presents an all-encompassing guide to re-implementing agent-based models, encompassing vital concepts such as comprehending the original model, utilizing agent-based modeling frameworks, simulation design, model validation, and more. By embracing the proposed guide, researchers and practitioners can gain a profound understanding of the entire re-implementation process, resulting in heightened accuracy and reliability of simulations for complex systems. Furthermore, this article showcases the re-implementation of the HUMAT socio-cognitive architecture, with a specific focus on designing a versatile, language-independent model. The encountered challenges and pitfalls in the re-implementation process are thoroughly discussed, empowering readers with practical insights. Embrace this guide to expedite model development while ensuring robust and precise simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the initiation of this step is independent from initiation of the other steps and can start at any time.

  2. 2.

    CoMSES Model Library, https://www.comses.net/codebases/, last access on 11/05/2023.

  3. 3.

    URBANE, https://www.urbane-horizoneurope.eu, last access on 10/05/2023.

References

  1. Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe-Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.S., Stillman, R.A., Thiele, J.C., Ayllón, D.: The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020)

    Article  Google Scholar 

  2. Tang, W., Grimm, V., Tesfatsion, L., Shook, E., Bennett, D., An, L., Gong, Z., Ye, X.: Code reusability and transparency of agent-based modeling: a review from a cyberinfrastructure perspective. In: Tang, W., Wang, S. (eds.) High Performance Computing for Geospatial Applications, pp. 115–134. Springer, Cham (2020)

    Chapter  Google Scholar 

  3. Achter, S., Borit, M., Chattoe-Brown, E., Siebers, P.O.: RAT-RS: a reporting standard for improving the documentation of data use in agent-based modelling. Int. J. Soc. Res. Methodol. 25(4), 517–540 (2022)

    Article  Google Scholar 

  4. Axelrod, R.: Advancing the art of simulation in the social Sciences. In: Simulating Social Phenomena. Lecture Notes in Economics and Mathematical Systems, vol. 456, pp. 21–40. Springer, Berlin Heidelberg, Berlin, Heidelberg (1997)

    Google Scholar 

  5. Zhong, W., Kim, Y.: Using model replication to improve reliability of agent-based models. In: Chai, S.K., Salerno, J.J., Mabry, P.L., Hutchison, D., Kanade, T. (eds.) Advances in Social Computing: 3rd International Conference on Social Computing, Behavioral Modeling, and Prediction, LNCS, vol. 6007, pp. 118–127. Springer (2010)

    Google Scholar 

  6. Will, O., Hegselmann, R.: A replication that failed: on the computational model in ’Michael W. Macy and Yoshimichi Sato: Trust, Cooperation and Market Formation in the U.S. and Japan. JASSS 11(3) (2008)

    Google Scholar 

  7. Antosz, P., Szczepanska, T., Bouman, L., Polhill, J.G., Jager, W.: Sensemaking of causality in agent-based models. Int. J. Soc. Res. Method. 25(4), 557–567 (2022). https://doi.org/10.1080/13645579.2022.2049510

    Article  Google Scholar 

  8. Maxwell, S.E., Lau, M.Y., Howard, G.S.: Is psychology suffering from a replication crisis? Am Psychol. 70(6), 487–498 (2015)

    Article  Google Scholar 

  9. Edmonds, B., Hales, D.: Replication. Some Hard Lessons from Model Alignment, Replication and Replication (2003)

    Google Scholar 

  10. An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdisc. Rev. Syst. Biol. Med. 1(2), 159–171 (2009)

    Article  Google Scholar 

  11. Liang, H., Fu, K.w.: Testing propositions derived from twitter studies: generalization and replication in computational social science. PLOS ONE 10(8), 1–14 (2015). https://doi.org/10.1371/journal.pone.0134270

  12. Railsback, S.F.: Concepts from complex adaptive systems as a framework for individual-based modelling. Ecolog. Model. 139(1), 47–62 (2001)

    Article  Google Scholar 

  13. Thiele, J.C., Kurth, W., Grimm, V.: Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and ‘R’ J. Artif. Soc. Soc. Simul. 17(3), 11 (2014)

    Google Scholar 

  14. Chattoe-Brown, E., Gilbert, N., Robertson, D.A., Watts, C.: Reproduction as a Means of Evaluating Policy Models: A Case Study of a COVID-19 Simulation. medRxiv (2021). https://doi.org/10.1101/2021.01.29.21250743

  15. Sansores, C., Pavón, J.: Agent-based simulation replication: a model driven architecture approach. In: MICAI 2005: Advances in AI 4th Mexican International Conference on AI, LNAI, vol. 3789, pp. 244–253. Springer (2005)

    Google Scholar 

  16. Wilensky, U., Rand, W.: Making models match: replicating an agent-based model. J. Artif. Soc. Soc. Simul. 10(4) (2007)

    Google Scholar 

  17. Zhang, J., Robinson, D.T.: Replication of an agent-based model using the replication standard. Environ. Modell. Softw. 139, 105016 (2021)

    Article  Google Scholar 

  18. Pressman, R., Maxim, B.: Software Engineering: A Practitioner’s Approach, 8th Ed (2014)

    Google Scholar 

  19. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd edn. Prentice Hall, USA (2004)

    Google Scholar 

  20. Grimm, V., Railsback, S.F.: Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philosoph. Trans. Royal Soc. B: Biol. Sci. 367(1586), 298–310 (2012)

    Article  Google Scholar 

  21. North, M.J., Macal, C.M.: Agent based modeling and computer languages. In: Meyers, R.A. (ed.) Encyclopedia of complexity and systems science, pp. 131–148. Springer New York (2009). https://doi.org/10.1007/978-0-387-30440-3

  22. Railsback, S., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Agent-based and Individual-based Modeling, A Practical Introduction (2019)

    Google Scholar 

  23. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.P.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)

    Article  Google Scholar 

  24. Masad, D., Kazil, J.: Mesa: An agent-based modeling framework, pp. 51–58. Austin, Texas (2015). https://doi.org/10.25080/Majora-7b98e3ed-009

  25. Collier, N.: RePast: An Extensible Framework for Agent Simulation. The University of Chicago’s Social Science Research (2003)

    Google Scholar 

  26. Gürcan, , Dikenelli, O., Bernon, C.: Towards a Generic Testing Framework for Agent-Based Simulation Models. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS 2011. pp. 635–642. Szczecin, Poland (2011)

    Google Scholar 

  27. Gürcan, , Dikenelli, O., Bernon, C.: A generic testing framework for agent-based simulation models. In: Agent-Based Modeling and Simulation, pp. 231–270. Springer (2014)

    Google Scholar 

  28. Antosz, P., Jager, W., Polhill, J.G., Salt, D., Alonso-Betanzos, A., Sánchez-Maroño, N., Guijarro-Berdiñas, B., Rodríguez, A.: Simulation model implementing different relevant layers of social innovation, human choice behaviour and habitual structures. Tech. Rep. D7.2 (2019)

    Google Scholar 

  29. de Bok, M., Tavasszy, L.: An empirical agent-based simulation system for urban goods transport (MASS-GT). Proced. Comput. Sci. 130, 126–133 (2018)

    Article  Google Scholar 

  30. Antosz, P., Jager, W., Polhill, J.G., Salt, D., Alonso-Betanzos, A., Sánchez-Maroño, N., Guijarro-Berdiñas, B., Rodríguez, A., Scalco, A.: SMARTEES simulation implementations. Tech. Rep. D7, 3 (2021)

    Google Scholar 

  31. Antosz, P., Puga-Gonzalez, I., Shults, F.L., Lane, J.E., Normann, R.: Documenting data use in a model of pandemic “Emotional Contagion’’ using the Rigour and transparency reporting standard (RAT-RS). In: Czupryna, M., Kamiński, B. (eds.) Advances in Social Simulation, pp. 439–451. Springer, Cham (2022)

    Chapter  Google Scholar 

  32. Antosz, P., Puga-Gonzalez, I., Shults, F.L., Szczepanska, T.: HUM-e: an emotive-socio-cognitive agent architecture for representing human decision-making in anxiogenic contexts. In: Squazzoni, F. (ed.) Advances in Social Simulation. Springer International Publishing, Cham

    Google Scholar 

  33. Abbott, R., Lim, J.: PyLogo: a python reimplementation of (Much of) NetLogo:. In: Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 199–206. SCITEPRESS—Science and Technology Publications, Online Streaming (2021)

    Google Scholar 

Download references

Acknowledgements

The work reported here is part of the URBANE project, which has received funding from the European Union’s Horizon Europe Innovation Action under grant agreement No. 101069782. We thank the reviewers for the thoughtful remarks, especially related to the popularization ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Gürcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gürcan, Ö., Szczepanska, T., Antosz, P. (2024). A Guide to Re-implementing Agent-Based Models: Experiences from the HUMAT Model. In: Elsenbroich, C., Verhagen, H. (eds) Advances in Social Simulation. ESSA 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-57785-7_40

Download citation

Publish with us

Policies and ethics