Abstract
Replicating existing agent-based models poses significant challenges, particularly for those new to the field. This article presents an all-encompassing guide to re-implementing agent-based models, encompassing vital concepts such as comprehending the original model, utilizing agent-based modeling frameworks, simulation design, model validation, and more. By embracing the proposed guide, researchers and practitioners can gain a profound understanding of the entire re-implementation process, resulting in heightened accuracy and reliability of simulations for complex systems. Furthermore, this article showcases the re-implementation of the HUMAT socio-cognitive architecture, with a specific focus on designing a versatile, language-independent model. The encountered challenges and pitfalls in the re-implementation process are thoroughly discussed, empowering readers with practical insights. Embrace this guide to expedite model development while ensuring robust and precise simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the initiation of this step is independent from initiation of the other steps and can start at any time.
- 2.
CoMSES Model Library, https://www.comses.net/codebases/, last access on 11/05/2023.
- 3.
URBANE, https://www.urbane-horizoneurope.eu, last access on 10/05/2023.
References
Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe-Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.S., Stillman, R.A., Thiele, J.C., Ayllón, D.: The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020)
Tang, W., Grimm, V., Tesfatsion, L., Shook, E., Bennett, D., An, L., Gong, Z., Ye, X.: Code reusability and transparency of agent-based modeling: a review from a cyberinfrastructure perspective. In: Tang, W., Wang, S. (eds.) High Performance Computing for Geospatial Applications, pp. 115–134. Springer, Cham (2020)
Achter, S., Borit, M., Chattoe-Brown, E., Siebers, P.O.: RAT-RS: a reporting standard for improving the documentation of data use in agent-based modelling. Int. J. Soc. Res. Methodol. 25(4), 517–540 (2022)
Axelrod, R.: Advancing the art of simulation in the social Sciences. In: Simulating Social Phenomena. Lecture Notes in Economics and Mathematical Systems, vol. 456, pp. 21–40. Springer, Berlin Heidelberg, Berlin, Heidelberg (1997)
Zhong, W., Kim, Y.: Using model replication to improve reliability of agent-based models. In: Chai, S.K., Salerno, J.J., Mabry, P.L., Hutchison, D., Kanade, T. (eds.) Advances in Social Computing: 3rd International Conference on Social Computing, Behavioral Modeling, and Prediction, LNCS, vol. 6007, pp. 118–127. Springer (2010)
Will, O., Hegselmann, R.: A replication that failed: on the computational model in ’Michael W. Macy and Yoshimichi Sato: Trust, Cooperation and Market Formation in the U.S. and Japan. JASSS 11(3) (2008)
Antosz, P., Szczepanska, T., Bouman, L., Polhill, J.G., Jager, W.: Sensemaking of causality in agent-based models. Int. J. Soc. Res. Method. 25(4), 557–567 (2022). https://doi.org/10.1080/13645579.2022.2049510
Maxwell, S.E., Lau, M.Y., Howard, G.S.: Is psychology suffering from a replication crisis? Am Psychol. 70(6), 487–498 (2015)
Edmonds, B., Hales, D.: Replication. Some Hard Lessons from Model Alignment, Replication and Replication (2003)
An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdisc. Rev. Syst. Biol. Med. 1(2), 159–171 (2009)
Liang, H., Fu, K.w.: Testing propositions derived from twitter studies: generalization and replication in computational social science. PLOS ONE 10(8), 1–14 (2015). https://doi.org/10.1371/journal.pone.0134270
Railsback, S.F.: Concepts from complex adaptive systems as a framework for individual-based modelling. Ecolog. Model. 139(1), 47–62 (2001)
Thiele, J.C., Kurth, W., Grimm, V.: Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and ‘R’ J. Artif. Soc. Soc. Simul. 17(3), 11 (2014)
Chattoe-Brown, E., Gilbert, N., Robertson, D.A., Watts, C.: Reproduction as a Means of Evaluating Policy Models: A Case Study of a COVID-19 Simulation. medRxiv (2021). https://doi.org/10.1101/2021.01.29.21250743
Sansores, C., Pavón, J.: Agent-based simulation replication: a model driven architecture approach. In: MICAI 2005: Advances in AI 4th Mexican International Conference on AI, LNAI, vol. 3789, pp. 244–253. Springer (2005)
Wilensky, U., Rand, W.: Making models match: replicating an agent-based model. J. Artif. Soc. Soc. Simul. 10(4) (2007)
Zhang, J., Robinson, D.T.: Replication of an agent-based model using the replication standard. Environ. Modell. Softw. 139, 105016 (2021)
Pressman, R., Maxim, B.: Software Engineering: A Practitioner’s Approach, 8th Ed (2014)
Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd edn. Prentice Hall, USA (2004)
Grimm, V., Railsback, S.F.: Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philosoph. Trans. Royal Soc. B: Biol. Sci. 367(1586), 298–310 (2012)
North, M.J., Macal, C.M.: Agent based modeling and computer languages. In: Meyers, R.A. (ed.) Encyclopedia of complexity and systems science, pp. 131–148. Springer New York (2009). https://doi.org/10.1007/978-0-387-30440-3
Railsback, S., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Agent-based and Individual-based Modeling, A Practical Introduction (2019)
Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.P.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)
Masad, D., Kazil, J.: Mesa: An agent-based modeling framework, pp. 51–58. Austin, Texas (2015). https://doi.org/10.25080/Majora-7b98e3ed-009
Collier, N.: RePast: An Extensible Framework for Agent Simulation. The University of Chicago’s Social Science Research (2003)
Gürcan, , Dikenelli, O., Bernon, C.: Towards a Generic Testing Framework for Agent-Based Simulation Models. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS 2011. pp. 635–642. Szczecin, Poland (2011)
Gürcan, , Dikenelli, O., Bernon, C.: A generic testing framework for agent-based simulation models. In: Agent-Based Modeling and Simulation, pp. 231–270. Springer (2014)
Antosz, P., Jager, W., Polhill, J.G., Salt, D., Alonso-Betanzos, A., Sánchez-Maroño, N., Guijarro-Berdiñas, B., Rodríguez, A.: Simulation model implementing different relevant layers of social innovation, human choice behaviour and habitual structures. Tech. Rep. D7.2 (2019)
de Bok, M., Tavasszy, L.: An empirical agent-based simulation system for urban goods transport (MASS-GT). Proced. Comput. Sci. 130, 126–133 (2018)
Antosz, P., Jager, W., Polhill, J.G., Salt, D., Alonso-Betanzos, A., Sánchez-Maroño, N., Guijarro-Berdiñas, B., Rodríguez, A., Scalco, A.: SMARTEES simulation implementations. Tech. Rep. D7, 3 (2021)
Antosz, P., Puga-Gonzalez, I., Shults, F.L., Lane, J.E., Normann, R.: Documenting data use in a model of pandemic “Emotional Contagion’’ using the Rigour and transparency reporting standard (RAT-RS). In: Czupryna, M., Kamiński, B. (eds.) Advances in Social Simulation, pp. 439–451. Springer, Cham (2022)
Antosz, P., Puga-Gonzalez, I., Shults, F.L., Szczepanska, T.: HUM-e: an emotive-socio-cognitive agent architecture for representing human decision-making in anxiogenic contexts. In: Squazzoni, F. (ed.) Advances in Social Simulation. Springer International Publishing, Cham
Abbott, R., Lim, J.: PyLogo: a python reimplementation of (Much of) NetLogo:. In: Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 199–206. SCITEPRESS—Science and Technology Publications, Online Streaming (2021)
Acknowledgements
The work reported here is part of the URBANE project, which has received funding from the European Union’s Horizon Europe Innovation Action under grant agreement No. 101069782. We thank the reviewers for the thoughtful remarks, especially related to the popularization ideas.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gürcan, Ö., Szczepanska, T., Antosz, P. (2024). A Guide to Re-implementing Agent-Based Models: Experiences from the HUMAT Model. In: Elsenbroich, C., Verhagen, H. (eds) Advances in Social Simulation. ESSA 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-57785-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-57785-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57784-0
Online ISBN: 978-3-031-57785-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)