Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Multi-dimensional Model for the Design and Development of Analytical Information Systems

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2024, EMMSAD 2024)

Abstract

The design and development of Analytical Information Systems demand efficient techniques and technologies for processing vast amounts of data that arrive at high velocity or that are available in legacy/operational systems. While many advances have been verified in the technological field to deal with the potential volume, velocity, and variety of the data, fewer contributions can be found in the methodological domain. These conceptual and methodological perspectives are key to providing the foundations for designing and developing Analytical Information Systems that also guarantee the veracity and value of the data. Considering three levels of detail, this paper proposes a multi-dimensional model that abstracts the dimensions to be considered, the driving components of the dimensions, and the core concepts of the components with the supporting approaches, techniques, or technologies for designing and developing Analytical Information Systems. We exemplify the proposed model with an instantiation that highlights the decisions or actions to be taken toward the design and development of more effective and efficient systems supporting decision-making in organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alter, S.: Defining information systems as work systems: implications for the IS field. Eur. J. Inf. Syst. 17(5), 448–469 (2008)

    Article  Google Scholar 

  2. Ardagna, C.A., Bellandi, V., Ceravolo, P., Damiani, E., Bezzi, M., Hebert, C.: A model-driven methodology for big data analytics-as-a-service. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 105–112. IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  3. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: a new generation of open platforms that unify data warehousing and advanced analytics. In: 11th Annual Conference on Innovative Data Systems Research (CIDR 2021), pp. 1–8. www.cidrdb.org, virtual (2021)

    Google Scholar 

  4. Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Logical design of multi-model data warehouses. Knowl. Inf. Syst. 65(3), 1067–1103 (2023)

    Article  Google Scholar 

  5. Costa, C., Andrade, C., Santos, M.Y.: Big data warehouses for smart industries. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–11. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_204-1

    Chapter  Google Scholar 

  6. Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly, Sebastopol (2022)

    Google Scholar 

  7. Dipti Kumar, V., Alencar, P.: Software engineering for big data projects: domains, methodologies and gaps. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2886–2895. IEEE (2016)

    Google Scholar 

  8. El Beggar, O., Letrache, K., Ramdani, M.: DAREF: MDA framework for modelling data warehouse requirements and deducing the multidimensional schema. Requirements Eng. 26(2), 143–165 (2021)

    Article  Google Scholar 

  9. Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

    Article  Google Scholar 

  10. Giles, J.: The Elephant in the Fridge: Guided Steps to Data Vault Success through Building Business-Centered Models (First Edition). Technics Publication (2019)

    Google Scholar 

  11. Golfarelli, M.: From user requirements to conceptual design in data warehouse design - a survey. In: Bellatreche, L. (ed.) Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction, pp. 1-16. IGI Global (2009)

    Google Scholar 

  12. Golfarelli, M., Rizzi, S.: A model-driven approach to automate data visualization in big data analytics. Inf. Vis. 19(1), 24–47 (2020)

    Google Scholar 

  13. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements elicitation. In: 14th IEEE International Requirements Engineering Conference (RE 2006), pp. 189–198 (2006)

    Google Scholar 

  14. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The definitive Guide to Dimensional Modeling. Wiley, Hoboken, 3rd. edition edn. (2013)

    Google Scholar 

  15. Lavalle, A., Maté, A., Trujillo, J.: Requirements-driven visualizations for big data analytics: a model-driven approach. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 78–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_8

    Chapter  Google Scholar 

  16. Leida, M., Ruiz, C., Ceravolo, P.: Facing big data variety in a model driven approach. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 1–6. IEEE (2016)

    Google Scholar 

  17. Lin, Y.T., Huang, S.J.: The design of a software engineering lifecycle process for big data projects. IT Prof. 20(1), 45–52 (2018)

    Google Scholar 

  18. Machado, I.A., Costa, C., Santos, M.Y.: Data-driven information systems: the data mesh paradigm shift. In: 29th. International Conference of Information System Development (ISD 2021) (2021)

    Google Scholar 

  19. Madera, C., Laurent, A.: The next information architecture evolution: The data lake wave. In: 8th. International Conference on Management of Digital Ecosystems (MEDES 2016), pp. 174–180 (2016)

    Google Scholar 

  20. Maté, A., Trujillo, J., Mylopoulos, J.: Specification and derivation of key performance indicators for business analytics: a semantic approach. Data Knowl. Eng. 108, 30–49 (2017)

    Article  Google Scholar 

  21. Michalczyk, S., Scheu, S.: Designing an analytical information system engineering method. In: Proceedings of the Twenty-Eighth European Conference on Information Systems (ECIS2020). Association for Information Systems (2020)

    Google Scholar 

  22. National Institute of Standards and Technology: National Institute of Standards and Technology Big Data Interoperability Framework (2015)

    Google Scholar 

  23. O’Neil, P., O’Neil, B., Chen, X.: The star schema benchmark (SSB) (2009). https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

  24. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    Article  Google Scholar 

  25. Romero, O., Abelló, A.: Automatic validation of requirements to support multidimensional design. Data Knowl. Eng. 69(9), 917–942 (2010)

    Article  Google Scholar 

  26. Santos, M.Y., Costa, C.: Big Data: Concepts. River Publishers, Warehousing and Analytics (2020)

    Google Scholar 

  27. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 5(4), 13–22 (2000)

    Google Scholar 

  28. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging journey from the wild to the lake. In: 7th. Biennial Conference on Innovative Data Systems Research (CIDR 2015) (2015)

    Google Scholar 

  29. Transaction Processing Performance Council: TPC-H Specification (Decision Support) Standard Specification, Revision 2.17.2 (2017). http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.2.pdf

  30. Vieira, A.A.C., Pedro, L., Santos, M.Y., Fernandes, J.M., Dias, L.S.: Data requirements elicitation in big data warehousing. In: Themistocleous, M., Rupino da Cunha, P. (eds.) EMCIS 2018. LNBIP, vol. 341, pp. 106–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11395-7_10

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, and by the Spanish Ministry of Universities and the Universitat Politècnica de València under the Margarita Salas Next Generation EU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Yasmina Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, M.Y., León, A. (2024). A Multi-dimensional Model for the Design and Development of Analytical Information Systems. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61007-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61006-6

  • Online ISBN: 978-3-031-61007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics