Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Computational Properties of Weak Continuity Notions

  • Conference paper
  • First Online:
Twenty Years of Theoretical and Practical Synergies (CiE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14773))

Included in the following conference series:

  • 244 Accesses

Abstract

The properties of continuous functions are very well-studied in computability theory and related areas. As it happens, there are many decompositions of continuity, which take the form

$$ \text {continuity }\leftrightarrow \text { [weak continuity notion }\textsf {A} + \text { weak continuity notion }\textsf {B}], $$

for certain spaces and where the weak continuity notions are generally independent. In this paper, we investigate the properties of some of these weak continuity notions in Kleene’s computability theory based on S1–S9. Interestingly, certain weak continuity notions can be analysed fully with rather modest means (Kleene’s quantifier \(\exists ^{2}\)), while others can be analysed with powerful tools (Kleene’s quantifier \(\exists ^{3}\)), but not with weaker oracles. In particular, finding the supremum on the unit interval is possible using \(\exists ^{2}\) for certain weak continuity notions, while for others the italicised operation is computable in \(\exists ^{3}\) but not in weaker oracles.

This research was supported by the Klaus Tschira Boost Fund (grant nr. GSO/KT 43) and RUB Bochum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Rathjen states in [25] that \(\varPi _{2}^{1}\text {-}{\textsf {CA}}_{0}\) dwarfs \(\varPi _{1}^{1}\text {-}{\textsf {CA}}_{0}\) and Martin-Löf talks of a chasm and abyss between these two systems in [18], all in the context of ordinal analysis. Since the difference between \(\exists ^{2}\) and \(\exists ^{3}\) amounts to the difference between \({\textsf {ACA}}_{0}\) and \({\textsf {{Z}}}_{2}\) (see [28] for these systems), we believe ‘abyss’ to be apt.

  2. 2.

    Note that \(\varphi (11\dots )=1\) and \(\varphi (g)=0\) for \(g\ne _{1} 11\dots \) by the definition of \((\exists ^{2})\), i.e. \(\lambda f.\varphi (f)\) is discontinuous at \(f=11\dots \) in the usual ‘epsilon-delta’ sense.

  3. 3.

    We use ‘s-continuity’ as the full name was used by Baire for a different notion.

  4. 4.

    If \(\mathfrak {c}\) is the cardinality of \(\mathbb {R}\), there are \(2^{\mathfrak {c}}\) non-measurable quasi-continuous \([0,1]\rightarrow \mathbb {R}\)-functions and \(2^{\mathfrak {c}}\) measurable quasi-continuous \([0,1]\rightarrow [0,1]\)-functions (see [13]).

References

  1. Baire, R.: Sur les fonctions de variables réelles. Ann. di Mat. 1–123 (1899)

    Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    Google Scholar 

  3. Borsík, J., Doboš, J.: A note on real cliquish functions. Real Anal. Exch. 18(1), 139–145 (1992/93)

    Google Scholar 

  4. Borsík, J.: Sums of quasicontinuous functions defined on pseudometrizable spaces. Real Anal. Exch. 22(1), 328–337 (1996/97)

    Google Scholar 

  5. Das, A., Nesterenko, V.: On decomposition of continuity, B-quasicontinuity and closed graph. Topol. Appl. 263, 325–329 (2019)

    Article  MathSciNet  Google Scholar 

  6. Dontchev, J.: Strong \(\mathscr {B}\)- sets and another decomposition of continuity. Acta Math. Hungar. 75(3), 259–265 (1997)

    Article  MathSciNet  Google Scholar 

  7. Dontchev, J.: Between \(\mathscr {A}\)- and \(\mathscr {B}\)- sets. Math. Balkanica 12(3–4), 295–302 (1998)

    MathSciNet  Google Scholar 

  8. Gibson, R.G., Natkaniec, T.: Darboux like functions. Real Anal. Exch. 22(2), 492–533 (1996/97)

    Google Scholar 

  9. Grande, Z.: Sur les fonctions A-continues. Demonstr. Math. 11(2), 519–526 (1978). (French)

    MathSciNet  Google Scholar 

  10. Gray, R.: Georg Cantor and transcendental numbers. Amer. Math. Monthly 101(9), 819–832 (1994)

    Article  MathSciNet  Google Scholar 

  11. Hatir, E., Noiri, T., Yüksel, S.: A decomposition of continuity. Acta Math. Hungar. 70(1–2), 145–150 (1996)

    Article  MathSciNet  Google Scholar 

  12. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. II, Zweite Auflage. Die Grundlehren der mathematischen Wissenschaften, Band 50. Springer (1970)

    Google Scholar 

  13. Holá, Ľ.: There are \(2^\mathfrak{c}\) quasicontinuous non Borel functions on uncountable Polish space. Results Math. 76(3), 11 (2021). Paper No. 126

    Google Scholar 

  14. Kohlenbach, U., Higher order reverse mathematics. In: Reverse Mathematics, vol. 2005. Lecture Notes in Logic 21, pp. 281–295. ASL (2001)

    Google Scholar 

  15. Levine, N.: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70, 36–41 (1963)

    Article  MathSciNet  Google Scholar 

  16. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications of Computability. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47992-6

    Book  Google Scholar 

  17. Maliszewski, A.: On the sums of Darboux upper semicontinuous quasi-continuous functions. Real Anal. Exch. 20(1), 244–249 (1994/95)

    Google Scholar 

  18. Martin-Löf, P.: The Hilbert-Brouwer controversy resolved? In: One Hundred Years of Intuitionism (1907–2007), pp. 243–256 (1967)

    Google Scholar 

  19. Normann, D.: Recursion on the Countable Functionals. Lecture Notes in Mathematics, vol. 811. Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0098600

    Book  Google Scholar 

  20. Normann, D., Sanders, S.: On the uncountability of \(\mathbb{R}\). J. Symb. Log. 43 (2022). https://doi.org/10.1017/jsl.2022.27

  21. Normann, D., Sanders, S.: Betwixt Turing and Kleene. In: Artemov, S., Nerode, A. (eds.) LFCS 2022. LNCS, vol. 13137, pp. 236–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93100-1_15

    Chapter  Google Scholar 

  22. Normann, D., Sanders, S.: On the computational properties of basic mathematical notions. J. Log. Comput. 18 (2022). https://doi.org/10.1093/logcom/exac075

  23. Normann, D., Sanders, S.: The biggest five of reverse mathematics. J. Math. Log. 56 (2023). https://doi.org/10.1142/S0219061324500077

  24. Przemski, M.: A decomposition of continuity and \(\alpha \)- continuity. Acta Math. Hungar. 61(1–2), 93–98 (1993)

    Article  MathSciNet  Google Scholar 

  25. Rathjen, M.: The art of ordinal analysis. In: International Congress of Mathematicians, vol. II. European Mathematical Society, Zürich (2006)

    Google Scholar 

  26. Sakálová, K.: On graph continuity of functions. Demonstr. Math. 27(1), 123–128 (1994)

    MathSciNet  Google Scholar 

  27. Sanders, S.: The non-normal abyss in Kleene’s computability theory. In: Della Vedova, G., Dundua, B., Lempp, S., Manea, F. (eds.) CiE 2023. LNCS, vol. 13967, pp. 37–49. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36978-0_4

    Chapter  Google Scholar 

  28. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, vol. 2. CUP (2009)

    Google Scholar 

  29. Smith, B.D.: An alternate characterization of continuity. Proc. Amer. Math. Soc. 39, 318–320 (1973)

    Article  MathSciNet  Google Scholar 

  30. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Heidelberg (1987)

    Google Scholar 

  31. Tong, J.C.: A decomposition of continuity. Acta Math. Hungar. 48(1–2), 11–15 (1986)

    Article  MathSciNet  Google Scholar 

  32. Tong, J.C.: On decomposition of continuity in topological spaces. Acta Math. Hungar. 54(1–2), 51–55 (1989)

    Article  MathSciNet  Google Scholar 

  33. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  Google Scholar 

  34. Hatice Yalvaç, T.: Decompositions of continuity. Acta Math. Hungar. 64(3), 309–313 (1994)

    Google Scholar 

  35. Young, W.H.: A theorem in the theory of functions of a real variable. Rendiconti del Circolo Matematico di Palermo XXIV, 187–192 (1907)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanders, S. (2024). On the Computational Properties of Weak Continuity Notions. In: Levy Patey, L., Pimentel, E., Galeotti, L., Manea, F. (eds) Twenty Years of Theoretical and Practical Synergies. CiE 2024. Lecture Notes in Computer Science, vol 14773. Springer, Cham. https://doi.org/10.1007/978-3-031-64309-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64309-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64308-8

  • Online ISBN: 978-3-031-64309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics