Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Resource Allocation on the Edge: A Causal and Contextually-Aware Machine Learning Approach

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1068))

Included in the following conference series:

  • 172 Accesses

Abstract

A new age of distributed and decentralized computing architectures has emerged in recent years due to the rise of edge computing. However, despite its potential, edge computing faces a variety of challenges, and one critical issue lies in the optimization of resource utilization due to the diverse nature of edge environments. Although resource allocation regards a topic heavily discussed in the area of edge computing, traditional approaches cannot manage to address efficiently this problem due to the heterogeneous nature of such environments. Motivated by this, in this paper, a novel dynamic resource allocation strategy for edge computing infrastructures is proposed, capable of identifying contextual information and causal relationships between the factors that affect an edge computing system and encapsulate them into the framework in order to perform informed adaptation decisions. The proposed framework is evaluated extensively in a simulated environment and the results show that it manages to optimize resource allocation and enhance the overall performance of the edge computing environment significantly when utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Qassem, L.M., Stouraitis, T., Damiani, E., Elfadel, I.A.M.: Proactive random-forest autoscaler for microservice resource allocation. IEEE Access 11, 2570–2585 (2023)

    Google Scholar 

  2. Chen, Y., Liu, Z., Zhang, Y., Yuan, W., Chen, X., Zhao, L.: Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Trans. Industr. Inf. 17(7), 4925–4934 (2020)

    Article  Google Scholar 

  3. Deng, X., Li, J., Shi, L., Wei, Z., Zhou, X., Yuan, J.: Wireless powered mobile edge computing: Dynamic resource allocation and throughput maximization. IEEE Trans. Mob. Comput. 21(6), 2271–2288 (2020)

    Article  Google Scholar 

  4. Gong, C., He, W., Wang, T., Gani, A., Qi, H.: Dynamic resource allocation scheme for mobile edge computing. J. Supercomput., 1–21 (2023)

    Google Scholar 

  5. Kaur, I., Lydia, E.L., Nassa, V.K., Shrestha, B., Nebhen, J., Malebary, S., Joshi, G.P.: Generative adversarial networks with quantum optimization model for mobile edge computing in IoT big data. Wirel. Personal Commun., 1–21 (2021)

    Google Scholar 

  6. Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.M.A., Dang, T.N., Hong, C.S.: Edge-computing-enabled smart cities: a comprehensive survey. IEEE Internet Things J. 7(10), 10200–10232 (2020)

    Google Scholar 

  7. Lin, J., Wei, Y., Yang, X., Zhao, P., Zhang, H., Zhao, W.: An edge computing based public vehicle system for smart transportation. IEEE Trans. Veh. Technol. 69(11), 12635–12651 (2020)

    Article  Google Scholar 

  8. Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Network 33(2), 111–117 (2019)

    Article  Google Scholar 

  9. Lv, Z., Chen, D., Lou, R., Wang, Q.: Intelligent edge computing based on machine learning for smart city. Futur. Gener. Comput. Syst. 115, 90–99 (2021)

    Article  Google Scholar 

  10. Paraskevoulakou, E., Tom-Ata, J.D.-T., Symvoulidis, C., Kyriazis, D.: Enhancing cloud-based application component placement with AI-driven operations. In: 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0687–0694. IEEE (2024)

    Google Scholar 

  11. Plachy, J., Becvar, Z., Strinati, E.C.: Dynamic resource allocation exploiting mobility prediction in mobile edge computing. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Shimizu, S., Inazumi, T., Sogawa, Y., Hyvarinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K., Hoyer, P.: Directlingam: a direct method for learning a linear non-gaussian structural equation model. J. Mach. Learn. Res. JMLR 12, 1225–1248 (2011)

    Google Scholar 

  13. Symvoulidis, C., Kiourtis, A., Marinos, G., Tom-Ata, J.-D.T., Manias, G., Mavrogiorgou, A., Kyriazis, D.: A user mobility-based data placement strategy in a hybrid cloud/edge environment using a causal-aware deep learning network. IEEE Trans. Comput. (2023)

    Google Scholar 

  14. Symvoulidis, C., Kiourtis, A., Mavrogiorgou, A., Tom-Ata, J.-D.T., Manias, G., Kyriazis, D.: Dynamic deployment prediction and configuration in hybrid cloud/edge computing environments using influence-based learning. In: 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 315–320. IEEE (2023)

    Google Scholar 

  15. Symvoulidis, C., Marinos, G., Kiourtis, A., Mavrogiorgou, A., Kyriazis, D.: Healthfetch: an influence-based, context-aware prefetch scheme in citizen-centered health storage clouds. Future Internet 14(4), 112 (2022)

    Article  Google Scholar 

  16. Symvoulidis, C., Tsoumas, I., Kyriazis, D.: Towards the identification of context in 5G infrastructures. In: Intelligent Computing: Proceedings of the 2019 Computing Conference, vol. 2, pp. 406–418. Springer (2019)

    Google Scholar 

  17. Tang, H., Li, C., Bai, J., Tang, J.H., Luo, Y.: Dynamic resource allocation strategy for latency-critical and computation-intensive applications in cloud-edge environment. Comput. Commun. 134, 70–82 (2019)

    Article  Google Scholar 

  18. Tsoumas, I., Symvoulidis, C., Kyriazis, D.: Learning a generalized matrix from multi-graphs topologies towards microservices recommendations. In: Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys), vol. 2, pp. 693–702. Springer (2021)

    Google Scholar 

  19. Wang, J., Zhao, L., Liu, J., Kato, N.: Smart resource allocation for mobile edge computing: a deep reinforcement learning approach. IEEE Trans. Emerg. Top. Comput. 9(3), 1529–1541 (2019)

    Article  Google Scholar 

  20. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2012)

    Article  Google Scholar 

  21. Xiong, X., Zheng, K., Lei, L., Hou, L.: Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE J. Sel. Areas Commun. 38(6), 1133–1146 (2020)

    Article  Google Scholar 

  22. Xu, Z., Wang, S., Liu, S., Dai, H., Xia, Q., Liang, W., Wu, G.: Learning for exception: dynamic service caching in 5G-enabled MECs with bursty user demands. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pp. 1079–1089. IEEE (2020)

    Google Scholar 

  23. Zhou, X., Ke, R., Yang, H., Liu, C.: When intelligent transportation systems sensing meets edge computing: vision and challenges. Appl. Sci. 11(20), 9680 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to this result has received funding from the European Commission programme Horizon Europe, under grant agreement No. 101092696 (CODECO Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysostomos Symvoulidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Symvoulidis, C., Paraskevoulakou, E., Kiourtis, A., Mavrogiorgou, A., Kyriazis, D. (2024). Dynamic Resource Allocation on the Edge: A Causal and Contextually-Aware Machine Learning Approach. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2024. Lecture Notes in Networks and Systems, vol 1068. Springer, Cham. https://doi.org/10.1007/978-3-031-66336-9_21

Download citation

Publish with us

Policies and ethics