Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Track Everything Everywhere Fast and Robustly

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We propose a novel test-time optimization approach for efficiently and robustly tracking any pixel at any time in a video. The latest state-of-the-art optimization-based tracking technique, OmniMotion, requires a prohibitively long optimization time, rendering it impractical for downstream applications. OmniMotion is sensitive to the choice of random seeds, leading to unstable convergence. To improve efficiency and robustness, we introduce a novel invertible deformation network, CaDeX++, which factorizes the function representation into a local spatial-temporal feature grid and enhances the expressivity of the coupling blocks with non-linear functions. While CaDeX++ incorporates a stronger geometric bias within its architectural design, it also takes advantage of the inductive bias provided by the vision foundation models. Our system utilizes monocular depth estimation to represent scene geometry and enhances the objective by incorporating DINOv2 long-term semantics to regulate the optimization process. Our experiments demonstrate a substantial improvement in training speed (more than 10 times faster), robustness, and accuracy in tracking over the SoTA optimization-based method OmniMotion.

Y. Song, J. Lei—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Müller, M.: ZoeDepth: zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023)

  3. Bian, Z., Jabri, A., Efros, A.A., Owens, A.: Learning pixel trajectories with multiscale contrastive random walks. In: CVPR, pp. 6508–6519 (2022)

    Google Scholar 

  4. Birkl, R., Wofk, D., Müller, M.: Midas v3. 1–A model zoo for robust monocular relative depth estimation. arXiv preprint arXiv:2307.14460 (2023)

  5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  6. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)

  8. Doersch, C., et al.: TAP-VID: a benchmark for tracking any point in a video. Adv. Neural. Inf. Process. Syst. 35, 13610–13626 (2022)

    Google Scholar 

  9. Doersch, C., et al.: TAPIR: tracking any point with per-frame initialization and temporal refinement. arXiv preprint arXiv:2306.08637 (2023)

  10. Guizilini, V., Vasiljevic, I., Chen, D., Ambrus, R., Gaidon, A.: Towards zero-shot scale-aware monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9233–9243 (2023)

    Google Scholar 

  11. Harley, A.W., Fang, Z., Fragkiadaki, K.: Particle video revisited: tracking through occlusions using point trajectories. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, vol. 13682, pp. 59–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_4

  12. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  13. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9772–9781 (2021)

    Google Scholar 

  14. Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.: CoTracker: it is better to track together. arXiv preprint arXiv:2307.07635 (2023)

  15. Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Repurposing diffusion-based image generators for monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  16. Lee, A.X., et al.: Beyond pick-and-place: tackling robotic stacking of diverse shapes. In: 5th Annual Conference on Robot Learning (2021)

    Google Scholar 

  17. Lei, J., Daniilidis, K.: CaDeX: learning canonical deformation coordinate space for dynamic surface representation via neural homeomorphism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6624–6634 (2022)

    Google Scholar 

  18. Li, W.: Superglue-based deep learning method for image matching from multiple viewpoints. In: Proceedings of the 2023 8th International Conference on Mathematics and Artificial Intelligence, pp. 53–58 (2023)

    Google Scholar 

  19. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: NeurIPS (2020)

    Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  21. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)

    Google Scholar 

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NERF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  23. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  24. Neoral, M., Šerỳch, J., Matas, J.: MFT: long-term tracking of every pixel. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6837–6847 (2024)

    Google Scholar 

  25. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  26. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 Davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  27. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NERF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  29. Sand, P., Teller, S.: Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vision 80, 72–91 (2008)

    Article  Google Scholar 

  30. Shi, J., Tomasi, C.: Good features to track. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR 1994., 1994 IEEE Computer Society Conference on, pp. 593–600. IEEE (1994)

    Google Scholar 

  31. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  32. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  33. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  34. Wang, Q., et al.: Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422 (2023)

  35. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)

    Google Scholar 

  36. Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  37. Xu, H., Yang, J., Cai, J., Zhang, J., Tong, X.: High-resolution optical flow from 1D attention and correlation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10498–10507 (2021)

    Google Scholar 

  38. Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: GMFlow: learning optical flow via global matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8121–8130 (2022)

    Google Scholar 

  39. Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: unleashing the power of large-scale unlabeled data. In: CVPR (2024)

    Google Scholar 

  40. Ye, V., Li, Z., Tucker, R., Kanazawa, A., Snavely, N.: Deformable sprites for unsupervised video decomposition. In: CVPR, pp. 2657–2666 (2022)

    Google Scholar 

  41. Zhang, F., Woodford, O.J., Prisacariu, V.A., Torr, P.H.: Separable flow: learning motion cost volumes for optical flow estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10807–10817 (2021)

    Google Scholar 

  42. Zhang, M.L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2014)

    Article  Google Scholar 

  43. Zheng, Y., Harley, A.W., Shen, B., Wetzstein, G., Guibas, L.J.: PointOdyssey: a large-scale synthetic dataset for long-term point tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19855–19865 (2023)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support through the NSF IIS-RI 2212433 grant, and a gift from AWS AI to Penn Engineering’s ASSET Center for Trustworthy AI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Lei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 93612 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Lei, J., Wang, Z., Liu, L., Daniilidis, K. (2025). Track Everything Everywhere Fast and Robustly. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72646-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72645-3

  • Online ISBN: 978-3-031-72646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics