Abstract
We propose a novel test-time optimization approach for efficiently and robustly tracking any pixel at any time in a video. The latest state-of-the-art optimization-based tracking technique, OmniMotion, requires a prohibitively long optimization time, rendering it impractical for downstream applications. OmniMotion is sensitive to the choice of random seeds, leading to unstable convergence. To improve efficiency and robustness, we introduce a novel invertible deformation network, CaDeX++, which factorizes the function representation into a local spatial-temporal feature grid and enhances the expressivity of the coupling blocks with non-linear functions. While CaDeX++ incorporates a stronger geometric bias within its architectural design, it also takes advantage of the inductive bias provided by the vision foundation models. Our system utilizes monocular depth estimation to represent scene geometry and enhances the objective by incorporating DINOv2 long-term semantics to regulate the optimization process. Our experiments demonstrate a substantial improvement in training speed (more than 10 times faster), robustness, and accuracy in tracking over the SoTA optimization-based method OmniMotion.
Y. Song, J. Lei—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Müller, M.: ZoeDepth: zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023)
Bian, Z., Jabri, A., Efros, A.A., Owens, A.: Learning pixel trajectories with multiscale contrastive random walks. In: CVPR, pp. 6508–6519 (2022)
Birkl, R., Wofk, D., Müller, M.: Midas v3. 1–A model zoo for robust monocular relative depth estimation. arXiv preprint arXiv:2307.14460 (2023)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)
Doersch, C., et al.: TAP-VID: a benchmark for tracking any point in a video. Adv. Neural. Inf. Process. Syst. 35, 13610–13626 (2022)
Doersch, C., et al.: TAPIR: tracking any point with per-frame initialization and temporal refinement. arXiv preprint arXiv:2306.08637 (2023)
Guizilini, V., Vasiljevic, I., Chen, D., Ambrus, R., Gaidon, A.: Towards zero-shot scale-aware monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9233–9243 (2023)
Harley, A.W., Fang, Z., Fragkiadaki, K.: Particle video revisited: tracking through occlusions using point trajectories. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, vol. 13682, pp. 59–75. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_4
Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9772–9781 (2021)
Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.: CoTracker: it is better to track together. arXiv preprint arXiv:2307.07635 (2023)
Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Repurposing diffusion-based image generators for monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Lee, A.X., et al.: Beyond pick-and-place: tackling robotic stacking of diverse shapes. In: 5th Annual Conference on Robot Learning (2021)
Lei, J., Daniilidis, K.: CaDeX: learning canonical deformation coordinate space for dynamic surface representation via neural homeomorphism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6624–6634 (2022)
Li, W.: Superglue-based deep learning method for image matching from multiple viewpoints. In: Proceedings of the 2023 8th International Conference on Mathematics and Artificial Intelligence, pp. 53–58 (2023)
Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. In: NeurIPS (2020)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NERF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Neoral, M., Šerỳch, J., Matas, J.: MFT: long-term tracking of every pixel. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6837–6847 (2024)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 Davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NERF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Sand, P., Teller, S.: Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vision 80, 72–91 (2008)
Shi, J., Tomasi, C.: Good features to track. In: Computer Vision and Pattern Recognition, 1994. Proceedings CVPR 1994., 1994 IEEE Computer Society Conference on, pp. 593–600. IEEE (1994)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)
Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Wang, Q., et al.: Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422 (2023)
Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)
Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Xu, H., Yang, J., Cai, J., Zhang, J., Tong, X.: High-resolution optical flow from 1D attention and correlation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10498–10507 (2021)
Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: GMFlow: learning optical flow via global matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8121–8130 (2022)
Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: unleashing the power of large-scale unlabeled data. In: CVPR (2024)
Ye, V., Li, Z., Tucker, R., Kanazawa, A., Snavely, N.: Deformable sprites for unsupervised video decomposition. In: CVPR, pp. 2657–2666 (2022)
Zhang, F., Woodford, O.J., Prisacariu, V.A., Torr, P.H.: Separable flow: learning motion cost volumes for optical flow estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10807–10817 (2021)
Zhang, M.L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2014)
Zheng, Y., Harley, A.W., Shen, B., Wetzstein, G., Guibas, L.J.: PointOdyssey: a large-scale synthetic dataset for long-term point tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19855–19865 (2023)
Acknowledgements
We gratefully acknowledge the financial support through the NSF IIS-RI 2212433 grant, and a gift from AWS AI to Penn Engineering’s ASSET Center for Trustworthy AI.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, Y., Lei, J., Wang, Z., Liu, L., Daniilidis, K. (2025). Track Everything Everywhere Fast and Robustly. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72646-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72645-3
Online ISBN: 978-3-031-72646-0
eBook Packages: Computer ScienceComputer Science (R0)