Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network

  • Conference paper
  • First Online:
Cancer Prevention, Detection, and Intervention (CaPTion 2024)

Abstract

Survival analysis plays a crucial role in estimating the likelihood of future events for patients by modeling time-to-event data, particularly in healthcare settings where predictions about outcomes such as death and disease recurrence are essential. However, this analysis poses challenges due to the presence of censored data, where time-to-event information is missing for certain data points. Yet, censored data can offer valuable insights, provided we appropriately incorporate the censoring time during modeling. In this paper, we propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly. Additionally, we introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes. Through empirical evaluation on two real-world cancer datasets, we demonstrate SurvCORN’s ability to maintain accurate ordering between patient outcomes while improving individual time-to-event predictions. Our contributions extend recent advancements in ordinal regression to survival analysis, offering valuable insights into accurate prognosis in healthcare settings. Our code is available at https://github.com/BioMedIA-MBZUAI/SurvCORN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_1. https://api.semanticscholar.org/CorpusID:245877569

  2. Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index for survival data. Stat. Med. 24(24), 3927–3944 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bonmatí, L.M., et al.: CHAIMELEON project: creation of a Pan-European repository of health imaging data for the development of AI-powered cancer management tools. Front. Oncol. 12 (2022)

    Google Scholar 

  4. Cook, N.R.: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115, 928–935 (2007). https://api.semanticscholar.org/CorpusID:14594808

  5. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 34 (1972). https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

  6. Fotso, S.: Deep neural networks for survival analysis based on a multi-task framework. ArXiv abs/1801.05512 (2018). https://api.semanticscholar.org/CorpusID:13482950

  7. Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks. PeerJ 7, e6257 (2019)

    Article  Google Scholar 

  8. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the yield of medical tests. JAMA J. Am. Med. Assoc. 247 (1982). https://doi.org/10.1001/jama.1982.03320430047030

  9. Harrell, F.E., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression modelling strategies for improved prognostic prediction. Stat. Med. 3 (1984). https://doi.org/10.1002/sim.4780030207

  10. Harrell, F.E., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15 (1996). https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

  11. Hartman, N., Kim, S., He, K., Kalbfleisch, J.D.: Pitfalls of the concordance index for survival outcomes. Stat. Med. 42 (2023). https://doi.org/10.1002/sim.9717

  12. Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol. Exp. 4(1), 50 (2020)

    Article  Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  14. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18 (2018). https://doi.org/10.1186/s12874-018-0482-1

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015)

    Google Scholar 

  16. Kvamme, H., Borgan, Ø.: Continuous and discrete-time survival prediction with neural networks. Lifetime Data Anal. 27(4), 710–736 (2021). https://doi.org/10.1007/s10985-021-09532-6

    Article  MathSciNet  Google Scholar 

  17. Lee, C., Zame, W., Yoon, J., Van der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. Proc. Conf. AAAI Artif. Intell. 32(1) (2018)

    Google Scholar 

  18. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022). https://doi.org/10.1016/j.media.2021.102336

    Article  Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  20. Reid, N.: Estimating the median survival time. Biometrika 68 (1981). https://doi.org/10.1093/biomet/68.3.601

  21. Shi, X., Cao, W., Raschka, S.: Deep neural networks for rank-consistent ordinal regression based on conditional probabilities. Pattern Anal. Appl. 26 (2023). https://doi.org/10.1007/s10044-023-01181-9

  22. Sparr, L.F., Moffitt, M.C., Ward, M.F.: Who returns and who stays away. Am. J. Psychiatry 150, 801–805 (1993)

    Article  Google Scholar 

  23. Vickers, A.J., Cronin, A.M.: Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework. Semin. Oncol. 37 (2010). https://doi.org/10.1053/j.seminoncol.2009.12.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ridzuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ridzuan, M., Saeed, N., Maani, F.A., Nandakumar, K., Yaqub, M. (2025). SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network. In: Ali, S., van der Sommen, F., Papież, B.W., Ghatwary, N., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention, Detection, and Intervention. CaPTion 2024. Lecture Notes in Computer Science, vol 15199. Springer, Cham. https://doi.org/10.1007/978-3-031-73376-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73376-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73375-8

  • Online ISBN: 978-3-031-73376-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics