Abstract
Survival analysis plays a crucial role in estimating the likelihood of future events for patients by modeling time-to-event data, particularly in healthcare settings where predictions about outcomes such as death and disease recurrence are essential. However, this analysis poses challenges due to the presence of censored data, where time-to-event information is missing for certain data points. Yet, censored data can offer valuable insights, provided we appropriately incorporate the censoring time during modeling. In this paper, we propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly. Additionally, we introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes. Through empirical evaluation on two real-world cancer datasets, we demonstrate SurvCORN’s ability to maintain accurate ordering between patient outcomes while improving individual time-to-event predictions. Our contributions extend recent advancements in ordinal regression to survival analysis, offering valuable insights into accurate prognosis in healthcare settings. Our code is available at https://github.com/BioMedIA-MBZUAI/SurvCORN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_1. https://api.semanticscholar.org/CorpusID:245877569
Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index for survival data. Stat. Med. 24(24), 3927–3944 (2005)
Bonmatí, L.M., et al.: CHAIMELEON project: creation of a Pan-European repository of health imaging data for the development of AI-powered cancer management tools. Front. Oncol. 12 (2022)
Cook, N.R.: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115, 928–935 (2007). https://api.semanticscholar.org/CorpusID:14594808
Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 34 (1972). https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Fotso, S.: Deep neural networks for survival analysis based on a multi-task framework. ArXiv abs/1801.05512 (2018). https://api.semanticscholar.org/CorpusID:13482950
Gensheimer, M.F., Narasimhan, B.: A scalable discrete-time survival model for neural networks. PeerJ 7, e6257 (2019)
Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the yield of medical tests. JAMA J. Am. Med. Assoc. 247 (1982). https://doi.org/10.1001/jama.1982.03320430047030
Harrell, F.E., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression modelling strategies for improved prognostic prediction. Stat. Med. 3 (1984). https://doi.org/10.1002/sim.4780030207
Harrell, F.E., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15 (1996). https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
Hartman, N., Kim, S., He, K., Kalbfleisch, J.D.: Pitfalls of the concordance index for survival outcomes. Stat. Med. 42 (2023). https://doi.org/10.1002/sim.9717
Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol. Exp. 4(1), 50 (2020)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243
Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18 (2018). https://doi.org/10.1186/s12874-018-0482-1
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015)
Kvamme, H., Borgan, Ø.: Continuous and discrete-time survival prediction with neural networks. Lifetime Data Anal. 27(4), 710–736 (2021). https://doi.org/10.1007/s10985-021-09532-6
Lee, C., Zame, W., Yoon, J., Van der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. Proc. Conf. AAAI Artif. Intell. 32(1) (2018)
Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022). https://doi.org/10.1016/j.media.2021.102336
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Reid, N.: Estimating the median survival time. Biometrika 68 (1981). https://doi.org/10.1093/biomet/68.3.601
Shi, X., Cao, W., Raschka, S.: Deep neural networks for rank-consistent ordinal regression based on conditional probabilities. Pattern Anal. Appl. 26 (2023). https://doi.org/10.1007/s10044-023-01181-9
Sparr, L.F., Moffitt, M.C., Ward, M.F.: Who returns and who stays away. Am. J. Psychiatry 150, 801–805 (1993)
Vickers, A.J., Cronin, A.M.: Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework. Semin. Oncol. 37 (2010). https://doi.org/10.1053/j.seminoncol.2009.12.004
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ridzuan, M., Saeed, N., Maani, F.A., Nandakumar, K., Yaqub, M. (2025). SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network. In: Ali, S., van der Sommen, F., Papież, B.W., Ghatwary, N., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention, Detection, and Intervention. CaPTion 2024. Lecture Notes in Computer Science, vol 15199. Springer, Cham. https://doi.org/10.1007/978-3-031-73376-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-73376-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73375-8
Online ISBN: 978-3-031-73376-5
eBook Packages: Computer ScienceComputer Science (R0)